生物安全知识资源中心—领域情报网 Chinese Academy of Sciences | BioSafety Information Network System

微信公众号

您当前的位置: 首页 > 采集报告

采集报告共计 507 条信息

1 2021年7月HIV研究亮点进展 2021-08-01

人类免疫缺陷病毒(human immunodeficiency virus,HIV),即艾滋病(AIDS,获得性免疫缺陷综合征)病毒,是造成人类免疫系统缺陷的一种病毒。1983年,HIV在美国首次发现。它是一种感染人类免疫系统细胞的慢病毒(lentivirus),属逆转录病毒的一种。HIV通过破坏人体的T淋巴细胞,进而阻断细胞免疫和体液免疫过程,导致免疫系统瘫痪,从而致使各种疾病在人体内蔓延,最终导致艾滋病。由于HIV的变异极其迅速,难以生产特异性疫苗,至今无有效治疗方法,对人类健康造成极大威胁。 自上世纪八十年代以来,艾滋病的流行已经夺去超过3400万人的生命。据世界卫生组织(WHO)统计,据估计,2017年,全世界有3690万人感染上HIV,其中仅59%的HIV感染者接受抗逆转录病毒疗法(ART)治疗。目前为止HIV仍然是全球最大的公共卫生挑战之一,因此急需深入研究HIV的功能,以帮助研究人员开发出可以有效对抗这种疾病的新疗法。为阻止病毒大量复制对免疫系统造成损害,HIV感染者需要每天甚至终身服用ART。虽然服用ART已被证明能有效抑制艾滋病发作,但这类药物价格昂贵、耗时耗力且副作用严重。人们急需找到治愈HIV感染的方法。 即将过去的7月份,有哪些重大的HIV研究或发现呢? 1.Science子刊:治愈HIV仍旧道阻且长!临床试验发现TLR7激动剂仅适度延迟停止ART治疗后的HIV病毒反弹 doi:10.1126/scitranslmed.abg3071 尽管多年来已经批准了许多抗逆转录病毒药物(ART),但新的策略正在开发之中,理论上可以给予HIV致命一击。医学研究人员正在探索基因疗法作为一种潜在的HIV治愈方法的可能性。其他团队正在研究CAR-T细胞疗法,这是一种免疫疗法,已经证明对某些形式的癌症有效。CAR-T细胞疗法包括从患者的血液中提取T细胞,然后在实验室中对它们进行修饰,使之识别和摧毁HIV感染的细胞。 但仍有其他努力,一项新的概念验证临床试验可能为进一步探究一种实验性免疫增强化合物铺平道路,该化合物与常规ART药物的组合使用已接受过测试。这种实验性化合物---维沙莫德(vesatolimod)---激活了先天免疫系统和获得性免疫系统的组成部分,对HIV施加了额外的压力。维沙莫德在攻击HIV的过程中,基本上调集了一支由多样化的免疫系统战士组成的军队。相关研究结果发表在2021年7月23日的Science Translational Medicine期刊上,论文标题为“The TLR7 agonist vesatolimod induced amodest delay in viral rebound in HIV controllers after cessation of antiretroviral therapy”。 在这篇论文中,吉利德科学公司的研究人员和来自美国几家领先研究中心的合作者们描述了他们对维沙莫德的小型1b期临床研究。这种实验性化合物通过提高先天免疫系统的关键组成部分而发挥作用:干扰素,即干扰病毒以阻止其复制的蛋白质;自然杀伤细胞。该化合物还参与T细胞激活。 论文第一作者、吉利德科学公司的Devi SenGupta博士写道,“与安慰剂相比,维沙莫德与干扰素信号、自然杀伤细胞和T细胞激活的增加有关,并且与携带完整HIV基因组的细胞的频率下降有关。在ART治疗中断后,维沙莫德还引起了病毒反弹时间的适度增加。” 2.Nature子刊:抗α4β7单克隆抗体治疗可有效减少HIV传播 doi:10.1038/s41392-021-00582-8 肠道相关淋巴组织(GALT)是HIV-1病毒复制的主要场所。驻留在GALT中的CD4+T细胞是HIV-1在急性感染期的主要靶标。表达高水平肠道归巢受体整合素α4β7的CD4+T细胞更容易感染HIV-1。据报道,HIV-1的包膜蛋白gp120能与整合素α4β7结合。此外,gp120与CD4+T细胞上的α4β7的接触导致LFA-1的快速激活,这有利于HIV-1在细胞间的有效传播。在恒河猴中,用抗α4β7单克隆抗体治疗可以有效地减少猴免疫缺陷病毒(SIV)---一种类似HIV的病毒---的粘膜传播,而且抗逆转录病毒药物(ART)治疗与α4β7抗体治疗相结合可以有效地防止停止ART治疗后出现的病毒反弹。 为了研究整合素α4β7和gp120之间的相互作用,来自中国科学院生物化学与细胞生物学研究所、中国科学院大连化学物理研究所、中国科学院大学杭州高等研究院和苏州大学附属苏州九院的研究人员在一项新的研究中,首先建立了CD4敲除的Jurkat T细胞系(CD4-Jurkat T),以消除gp120与CD4的结合,然后在这些细胞中稳定地表达整合素α4β7(CD4-α4β7+Jurkat T)。在1mM钙离子和1mM镁离子(维持整合素α4β7处于非活性状态的生理性二价阳离子)的存在下,CD4-α4β7+Jurkat T细胞没有粘附在固定的MN gp120(来自HIV-1 B亚型毒株MN)底物上。相比之下,CD4-α4β7+Jurkat T细胞在用0.5mM二价锰离子诱导α4β7激活后显示出对gp120的强烈粘附,并且这种粘附可被整合素α4β7阻断抗体Act-1和FIB504完全阻断。此外,可溶性gp120蛋白与CD4-Jurkat T细胞和CD4-α4β7+Jurkat T细胞的结合显示出一致的结果。这些数据表明,HIV-1包膜蛋白gp120与Jurkat T细胞上的活化整合素α4β7结合,并且这种结合与CD4无关。相关研究结果于2021年7月16日发表在Signal Transduction and Targeted Therapy期刊上,论文标题为“Distinct chemokines selectively induce HIV-1 gp120-integrinα4β7 binding via triggering conformer-specific activation ofα4β7”。 这些作者进一步发现gp120与T细胞表面上的α4β7的结合激活了T细胞中的多种信号通路,包括FAK、Akt、Src、ERK和p38。其中的一些信号通路与HIV复制和CD4 T细胞的耗竭密切相关。首先,HIV-1利用ERK和p38通路来产生新的病毒颗粒。第二,在HIV-1感染期间,在原代人类T细胞中观察到的gp120介导的细胞凋亡需要p38激活。第三,据报道,Akt通路在HIV-1病毒库的形成中起作用,阻断Akt的激活限制了HIV-1从潜伏感染的T细胞中恢复。因此,gp120-α4β7结合诱导的整合素下游信号传导在HIV-1感染和病毒复制中起着重要作用。Akt、ERK和p38通路可能是抗HIV药物研发的潜在靶标。 3.牛津大学开启名为HIVconsvX疫苗的HIV疫苗临床试验 新闻来源:Novel HIV vaccine trial starts at Oxford 近日,英国牛津大学开始进行了一种新型HIV候选疫苗的接种工作,作为在英国进行第一阶段临床试验的一部分。这项被称为HIV-CORE 0052的试验旨在评估HIVconsvX疫苗的安全性、机体耐受性和免疫原性;HIVconsvX疫苗是一种能靶向作用广泛HIV突变体的嵌合体疫苗,这或许就有可能使其适用于任何地理区域的HIV毒株。 研究人员招募了13名健康的、HIV阴性的成年志愿者,其年龄在18-65岁,且被认为并没有高风险的感染率,最初这些志愿者会接受一剂疫苗,随后会在四周后再接种一针加强疫苗。该临床试验是欧洲艾滋病疫苗计划(EAVI2020)的一部分,而EAVI2020是一项国际合作研究项目,由欧盟委员会根据“地平线2020”计划进行研究资助。 来自牛津大学的高级临床研究者Paola Cicconi表示,实现机体对HIV的保护对于我们而言是极具挑战的,重要的是我们要利用免疫系统中抗体和T细胞的保护潜力。目前HIV的预防重点集中在人类机体行为和生物医学干预上,比如男性自愿医疗包皮环切、安全套的使用以及在性接触前使用抗逆转录病毒药物等。强有力的研究证据表明,检测不到的HIV病毒载量或会预防HIV的传播,尽管如此,HIV新发感染的下降速度仍然无法达到联合国大会在2016年时商定的快速通道目标,即从2020年开始,每年的新发感染数少于50万人。 即使在增加抗逆转录病毒疗法和预防的大背景下,HIV-1疫苗仍然是最好的解决方案,并且可能是任何结束艾滋病流行的战略的关键组成部分。研究人员希望能够在2022年4月前报告HIV-CORE 0052试验的结果。此外,他们还计划在欧洲、非洲和美国开战类似的临床试验。 4.Lancet子刊:HIV感染对儿童的生长和骨骼强度有不利影响 doi:10.1016/S2352-4642(21)00133-4 根据迄今为止调查HIV与儿童骨骼健康之间联系的最大规模研究,感染HIV病毒的儿童在成长过程中会出现令人担忧的骨骼强度缺陷,这种缺陷在青春期结束时变得更加明显。这项研究在津巴布韦进行,确定了这种骨骼缺陷与在撒哈拉以南非洲地区广泛使用的一线抗逆转录病毒HIV药物---富马酸泰诺福韦酯(tenofovir disproxil fumarate,TDF)---之间的联系。相关研究结果近期发表在Lancet Child and Adolescent Health期刊上,论文标题为“Effect of HIV infection on growth and bone density in peripubertal children in the era of antiretroviral therapy:a cross-sectional study in Zimbabwe”。 在这项具有里程碑意义的研究中,这些作者招募了303名感染HIV的儿童和306名未感染HIV的儿童,以比较骨骼缺陷和密度。他们发现,骨密度明显不足的情况在感染HIV的儿童中很常见,与未感染HIV的同龄人相比,他们的低骨密度(两个或更多标准差的不足)的发生率要高得多。然而,HIV对骨密度的影响在青春期的最后阶段最为明显,特别是影响女性的脊柱。服用TDF与骨质缺损密切相关,特别是影响到全身(主要反映皮质骨,即骨的外表面,在骨内部提供一个保护层)的骨质缺损。 论文通讯作者Ruramayi Rukuni博士说,“这是迄今为止调查HIV感染对撒哈拉以南非洲儿童骨骼健康影响的最大规模研究。我们的结果为我们提供了关于HIV感染及其治疗对骨骼健康的长期影响的新见解。” 5.JCI Insight:新研究为利用间充质干细胞疗法根除HIV提供了路线图 doi:10.1172/jci.insight.149033 猴免疫缺陷病毒(SIV)是非人灵长类动物中的人类免疫缺陷病毒(HIV)的等价物。在一项突破性的研究中,来自美国加州大学戴维斯分校的研究人员发现了一种特殊的干细胞---间充质干细胞(mesenchymal stem/stromal cell,MSC)---可以减少导致获得性免疫缺乏综合征(AIDS,俗称艾滋病)的病毒数量,提高身体的抗病毒免疫力,修复和恢复受到SIV破坏的肠道淋巴滤泡。相关研究结果发表在2021年6月22日的JCI Insight期刊上,论文标题为“Gut germinal center regeneration and enhanced antiviral immunity by mesenchymal stem/stromal cells in SIV infection”。 这些作者在恒河猴的AIDS模型中给送了骨髓MSC,其中该模型由于病毒感染而出现免疫力受损和肠道功能紊乱。Dandekar说,“我们开始认识到这些干细胞在治疗传染性疾病方面的巨大潜力。我们尚未发现这些干细胞如何影响慢性病毒感染,如AIDS。” 这项研究发现,MSC可以调节、改变和重塑受损的粘膜部位。它带来了直接的好处,针对这种病毒的抗体和T细胞迅速上升。这些干细胞对这些淋巴滤泡的复原和恢复起了重要的作用。 MSC还为开发创新的、多管齐下的HIV治愈策略以补充目前的HIV治疗提供了机会。Dandekar说,“这些干细胞可与药物发挥良好的协同作用。ART药物可以阻止病毒感染的火焰,但不能恢复淋巴组织。MSC将使该领域重新焕发活力,并使免疫活力恢复。” 6.NEJM:多替拉韦或达芦那韦联合齐多夫定或替诺福韦治疗HIV感染的比较的析因研究(NADIA研究) doi:10.1056/NEJMoa2101609 在一项2×2析因、开放标签、非劣效性试验中,我们将一线治疗失败(HIV-1病毒载量,≥1000 copies/mL)的患者随机分组,分别接受多替拉韦或利托那韦增强达芦那韦治疗,并且接受替诺福韦或齐多夫定治疗;所有患者均接受了拉米夫定治疗。主要结局是按照美国食品药品管理局快照算法,第48周的病毒载量<400 copies/mL(对于发生主要结局的患者百分比的组间差异,非劣效性界值为12个百分点)。 我们在撒哈拉以南非洲地区的7个研究中心纳入了464例患者。在多替拉韦组90.2%的患者(212/235)和达芦那韦组91.7%的患者(210/229)(差异,-1.5%;95%置信区间[CI],-6.7~3.7;P=0.58;证明了多替拉韦的非劣效性,但未证明优效性)中,以及在替诺福韦组92.3%的患者(215/233)和齐多夫定组89.6%的患者(207/231)(差异,2.7%;95%CI,-2.6~7.9;P=0.32;证明了替诺福韦的非劣效性,但未证明优效性)中,我们观察到第48周的病毒载量<400 copies/mL。在预计NRTI缺乏抗病毒活性的患者亚组中,我们在多替拉韦组和达芦那韦组90%以上的患者中观察到病毒载量<400 copies/mL。在任何一项析因比较分析中,不良事件发生率均无显著组间差异。 多替拉韦联合NRTI可有效治疗HIV-1感染患者,包括预计NRTI缺乏抗病毒活性的广泛NRTI耐药患者。作为二线治疗,替诺福韦不劣于齐多夫定。(由杨森公司资助;NADIA在ClinicalTrials.gov注册号为NCT03988452。) 7.Lancet子刊:新发现!暴露前口服预防药物能降低超9成HIV感染风险! doi:10.1016/S2352-3018(21)00074 每日接触前预防(PrEP)在预防艾滋病毒方面是有效的,但在现实世界中,关于有效性和依从性的长期数据很少。因此,最近来自澳大利亚的专家报告了开具PrEP的高危人群3年内的HIV发病率趋势,以及过渡到有补贴的PrEP之前的依从性。结果发表自Lancet HIV杂志上。 EPIC-NSW是一项务实的、前瞻性的、单臂的、在澳大利亚新南威尔士州31个地点(性健康诊所、普通诊所和一家医院)实施的每日口服PrEP研究。符合条件的参与者是HIV阴性的成年人(年龄≥18岁),他们是当地PrEP指南中定义的HIV感染高风险人群。参与者被开具共同配方(每天一次,口服片剂)的富马酸替诺福韦酯(300毫克)和恩曲他滨(200毫克)作为HIV PrEP,并接受HIV检测、性传播感染检测和PrEP发放的随访。计划对3700名参与者进行为期一年的随访。主要结果是所有至少获得一次PrEP并且至少有一次后续HIV检测结果的参与者中新的HIV感染。 2016.03.01-2018.04.30期间,共招募了9709名参与者。9596名参与者被发放了PrEP,其中9448人(98.3%)是同性恋或双性恋男性。参与者被随访至2019.03.31,9520名(99-2%)参与者至少有一次后续HIV检测。第一季度至第九季度,平均药物持有率(MPR)从0.93下降到0.64。在18628人年中有30例HIV血清转换,发病率为1.61/1000人年(95%CI 1.12-2.30)。总体而言,对照没有PrEP的历史预期数据,总感染率降低了92%!更年轻、居住在男同性恋者较少的区域、在基线时报告更多的危险行为、以及MPR低于0.6,都与HIV发病率的增加有关。 在随访的最后一年,当PrEP大部分被购买而不是由研究免费提供时,HIV发病率仍然很低,为2.24/1000人年(1.46-3.46)。研究人员指出,这意味着长达3年的随访期间,HIV感染率都很低,PrEP都很有效。 8.Eur Heart J:HIV感染者的胸腹主动脉瘤发生率升高了4倍! doi:10.1093/eurheartj/ehab348 联合抗逆转录病毒疗法的引入极大地改善了HIV感染者(PLWH)的预后,但HIV感染者的长期存活率仍然低于未感染者,部分原因是HIV感染者的心血管疾病(CVD)的发病率增加。据报道,与普通人群相比,HIV感染者发生动脉粥样硬化性CVD的可能性是其两倍。但是,HIV感染者主动脉瘤的患病率仍未明确。Julie等人调查了HIV状态是否与主动脉瘤独立相关,还评估了与HIV感染者主动脉瘤相关的风险因素。 在HIV感染研究中招募了594位40岁及以上的HIV感染者,并从普通人群研究中招募了1188位年龄和性别相匹配的非感染对照。根据欧洲心脏病学会指南定义主动脉瘤:即主动脉扩张≥50%或肾下主动脉直径≥30 mm。 HIV感染者和非感染对照的中位年龄分别是52岁(47-60)和52(48-61),男性分别占88%和90%。在42位(7.1%)HIV感染者中发现了46例主动脉瘤,在29位(2.4%)非感染者中发现了31例主动脉瘤(p<0.001)。HIV感染者的升主动脉瘤和肾下主动脉瘤的患病率明显较非感染者高。在校正模型中,HIV感染与主动脉瘤独立相关(校正优势比4.51,95%CI 2.56-8.08;p<0.001)。在HIV感染者中,肥胖和乙肝病毒共感染也与主动脉瘤相关。 综上所述,与未感染的对照组相比,HIV感染者患主动脉瘤的几率高出四倍,而且HIV状态与主动脉瘤独立相关。在HIV感染者中,年龄、肥胖和合并乙型肝炎感染均与主动脉瘤的发生率较高相关。该研究结果表明,增加对HIV感染者主动脉瘤的关注可能是有益的。 查看详细>>

来源: 点击量:6

2 2021年7月CRISPR/Cas最新研究进展 2021-08-01

基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。2020年10月,德国马克斯-普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A.Doudna博士因在CRISPR-Cas9基因编辑方面做了的贡献荣获2020年诺贝尔化学奖。 CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 即将过去的7月份,有哪些重大的CRISPR/Cas研究或发现呢?小编梳理了一下这个月生物谷报道的CRISPR/Cas研究方面的新闻,供大家阅读。 1.Nat Commun:利用CRISPR-Cas13b基因编辑技术高效阻止新冠病毒及其变体在人细胞中的复制 doi:10.1038/s41467-021-24577-9 最近,令人担忧的SARS-CoV-2病毒变体的出现突出表明需要创新方法以便同时抑制病毒复制和防止病毒逃避宿主免疫反应和抗病毒药物治疗。在一项新的研究中,澳大利亚研究人员使用一种称为CRISPR-Cas13b的基因编辑技术成功地阻止SARS-CoV-2病毒在受感染的人类细胞中的复制,这可能为治疗COVID-19铺平道路。鉴于这种CRISPR基因编辑工具在实验室测试中可有效阻止这种病毒复制,他们希望尽快开始动物实验。相关研究结果于2021年7月13日发表在Nature Communications期刊上,论文标题为“Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance”。 这些作者采用全基因组计算预测和单核苷酸分辨率筛选,针对SARS-CoV-2基因组RNA和亚基因组RNA重编程CRISPR-Cas13b。经过重编程的效应蛋白Cas13b靶向SARS-CoV-2刺突蛋白和核衣壳蛋白编码基因的RNA转录本的可访问区域,在无病毒模型中取得了>98%的沉默效率。此外,同时使用多种经过优化的Cas13b CRISPR RNA(crRNA)抑制了感染有复制能力的SARS-CoV-2(包括最近出现的令人关注的SARS-CoV-2病毒变体B.1.1.7)的哺乳动物细胞中的病毒复制。针对向导RNA(gRNA)-靶标相互作用的全面诱变实验表明,单核苷酸错配并不影响强效的单一crRNA在感染的哺乳动物细胞中抑制SARS-CoV-2祖先毒株和SARS-CoV-2变体毒株(包括D614G变体毒株)复制的能力。 论文通讯作者、澳大利亚彼得-多尔蒂感染与免疫研究所的Sharon Lewin博士表示,他们设计的CRISPR-Cas13b能够识别导致COVID-19的SARS-CoV-2病毒。在识别后,Cas13b就会切割这种病毒的基因组,从而阻止它在人细胞中的复制。 2.Mol Ther:腺嘌呤碱基编辑有望治疗α-1-抗胰蛋白酶缺乏症 doi:10.1016/j.ymthe.2021.06.021 单基因疾病α-1-抗胰蛋白酶缺乏症(Alpha-1 antitrypsin deficiency,AATD)是一种常见的遗传性疾病,会影响肝脏和肺部。一项新的研究显示一种新的基因编辑形式能够有效地校正AATD患者细胞中的突变。这种称为腺嘌呤碱基编辑的新方法与包括CRISPR在内的其他编辑形式不同,因为这种碱基编辑不会诱发DNA断裂,这有助于防止双链断裂、潜在的脱靶编辑以及细胞修复过程中不需要的突变。相关研究结果于2021年7月1日在线发表在Molecular Therapy期刊上,论文标题为“Adenine Base Editing Reduces Misfolded Protein Accumulation and Toxicity in Alpha-1 Antitrypsin Deficient Patient ipsC-Hepatocytes”。 在这项新的研究中,在美国波士顿大学再生医学中心的Andrew Wilson博士和Rhiannon Werder博士的领导下,研究人员利用称为iHeps的患者衍生细胞。iHeps细胞模拟肝脏肝细胞的生物学特性。肝细胞是体内α-1抗胰蛋白酶蛋白的主要制造者,具有重要的代谢、内分泌和分泌的功能。这种碱基编辑技术校正了导致AATD的Z突变,并减少了该疾病在肝细胞中的影响,从而证明了人类细胞中碱基编辑的成功。这些结果可以有助于为未来的人体临床试验铺平道路。 Wilson说,“这项研究显示了成功应用碱基编辑技术来校正AATD患者衍生性肝细胞中导致这种疾病的突变。我希望这些结果将为利用这项技术帮助AATD和其他单基因疾病的患者提供机会。” 3.Nat Commun:科学家成功利用CRISPR碱基编辑技术纠正产前溶酶体贮积病 doi:10.1038/s41467-021-24443-8 子宫内的碱基编辑或有望在机体病变发生之前来纠正致病性的突变,1型黏多糖病(MPS-IH,贺勒氏症,指任何一种涉及黏多糖先天性代谢紊乱的疾病)是一种影响机体多个器官功能的溶酶体贮积病(LSD,lysosomal storage disease),其通常会导致个体出生后发生早期的心肺衰竭。如今越来越多的研究证据证实了在出生前纠正致死性的遗传性疾病可行性,近日,一篇发表在国际杂志Nature Communications上题为“In utero split AAV9 adenine base editing corrects the multi-organ pathology in alethal lysosomal storage disease”的研究报告中,来自费城儿童医院等机构的科学家们通过研究成功利用DNA碱基编辑技术对产前小鼠模型进行研究,纠正了一种被称为贺勒氏症的溶酶体贮积病。利用一种在腺相关病毒载体中运输的腺嘌呤碱基编辑器,研究人员就能纠正负责这种疾病的单一碱基突变,这种疾病在个体出生前就已经开始进展了,其会影响多个器官的功能,如果不及时治疗的话,有可能会导致个体在儿童期就发生死亡。 医学博士William H.Peranteau表示,本文研究结果表明,在临床前小鼠模型中利用产前碱基编辑技术来治疗贺勒氏症是可行的。除了能够展示出生前治疗该疾病的益处外,研究者还发现,利用这种碱基编辑工具还能在个体出生后对其进行矫正,这就突出了该技术在产前和产后治疗贺勒氏症的前景和希望。贺勒氏症是一种溶酶体贮积病,在西方国家中,大约每10万名婴儿中就有1名婴儿会受到该病的影响,该病的发生通常是由单一DNA碱基突变所引起的,即腺嘌呤代替了鸟嘌呤;患儿出生后6个月时,其就会出现肝脏和脾脏肿胀、腹壁疝气、肌肉骨骼异常、视网膜和神经认知退化及心脏病等疾病表现;如果不加以治疗的话,患者在5-10岁时会因心肺并发症而发生死亡;即使接受了治疗,患者也会出现一定的疾病并发症,因为目前的治疗方法所产生的治疗效果非常有限,尤其是在患儿延迟治疗的情况下。 由于这种疾病的病理学表现在患者出生前就已经开始了,因此研究人员认为,该综合征是产前治疗的最佳候选对象,基于这一考虑,研究人员利用CRISPR碱基编辑技术成功将MPS-IH小鼠模型中突变的腺嘌呤转换成了鸟嘌呤,该技术只需要单链DNA的破裂,其要比其它编辑方法更加有效且安全。文章中,研究人员使用了一种腺相关病毒9(AAV9)病毒载体来讲碱基编辑器运输到胎儿小鼠模型中,结果发现,接受产前治疗的小鼠模型表现出了存活率的提高和机体代谢、骨骼和心脏疾病病理学表现的改善。值得注意的是,研究人员在模型机体中的肝脏和心脏中都观察到了修正细胞的存在,这就表明这种疗法或能对多个器官有效。 4.Cell:揭示DNA修复蛋白RAD51可让CRISPR基因编辑更高效 doi:10.1016/j.cell.2021.04.035 基因编辑是有目的地改变基因的DNA序列,是研究突变如何导致疾病,以及为治疗目的改变一个人的DNA的有力工具。在一项新的研究中,美国麻省理工学院大脑与认知科学教授Guoping Feng及其团队开发出一种可用于这两种目的的新型基因编辑方法。相关研究结果近期发表在Cell期刊上,论文标题为“Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair”。 为了提高基因编辑过程的效率,Feng实验室最初假设,在CRISPR基因编辑工具的标准混合物中加入一种名为RAD51的DNA修复蛋白,将增加细胞(在这种情况下是受精小鼠卵,即单细胞胚胎)发生所需基因变化的几率。作为一个测试案例,他们测量了他们能够插入(“敲入”)与自闭症有关的基因Chd2突变的速率。被正确编辑的胚胎的总体比例保持不变,但令他们惊讶的是,在两条染色体上携带所需基因编辑的比例明显更高。用一个不同的基因进行的测试也产生了同样的意外结果。 Feng实验室接下来着手了解RAD51增强基因编辑的机制。他们假设RAD51参与了一种叫做同源体间修复(interhomolog repair,IHR)的过程,即一条染色体上的DNA断裂以该染色体的第二个拷贝(来自另一个亲本)为模板进行修复。为了测试这一点,他们给小鼠胚胎注射了RAD51和CRISPR,但没有注射模板DNA。他们对CRISPR进行编程,只切割其中一条染色体上的基因序列,然后测试它是否被修复以匹配未切割染色体拷贝上的序列。在这个实验中,他们不得不使用母体和父体染色体上的序列不同的小鼠。他们发现,单独注射CRISPR的对照组胚胎很少出现IHR修复。然而,添加RAD51显著增加了编辑CRISPR靶向基因以匹配未切割染色体拷贝的胚胎数量。 Wilde说,“以前对IHR的研究已发现,它在大多数细胞中的效率低得惊人。我们发现它在胚胎细胞中更容易发生,并且可以被RAD51增强,这表明更深入地了解是什么使胚胎允许这种类型的DNA修复,可能帮助我们设计更安全和更有效的基因疗法。” 5.eLife:改造蚊子基因是否阻止传播疟疾 doi:10.7554/eLife.58791 越来越多的蚊子对杀虫剂的抗药性,以及疟疾寄生虫对抗疟药物的抗药性,使人们迫切需要新的方法来对抗这种疾病。蚊虫媒介抗药性和寄生虫抗药性的上升突出表明,如果要使消灭疟疾继续成为可行的目标,就迫切需要开发新的工具。在eLife发表的一项初步研究表明,改变蚊子的肠道基因,使其将抗疟基因传播给下一代蚊子,有望成为遏制疟疾的一种方法。 这项研究是利用CRISPR-Cas9基因编辑技术对蚊子基因进行改变的一系列步骤中的最新一步,这些基因可能会降低蚊子传播疟疾的能力。如果进一步的研究支持这一方法,它将为减少疟疾引起的疾病和死亡提供一种新的方法,也是控制疟疾的很有希望的工具。 研究人员对传播疟疾的蚊子冈比亚按蚊进行了基因改造。他们使用CRISPR-Cas9技术在蚊子进食血粉后打开的基因中插入了一种编码抗疟蛋白的基因。研究小组这样做的方式,使整个部分的DNA也发挥了基因驱动作用,可以传递给大多数蚊子的后代。他们最初将该基因与荧光标记一起插入,以帮助他们在DNA中的三个不同点追踪该基因,然后移除该标记,只留下一个小的基因修饰。接下来,他们培育了这些蚊子,看看它们是否能够成功繁殖并保持健康。他们还测试了疟原虫在蚊子体内的发育情况。 这些基因改造是被动的,可以在现场进行测试,并经过严格的监管程序,保证它们能够安全有效地阻断寄生虫,不会引起人们对环境中意外传播的担忧。把它们和其他蚊子结合在一起,再加上一种活跃的基因驱动,它们就会变成基因驱动,而不需要任何进一步的改变。这些研究使基因驱动技术在这一领域更接近于作为一种消灭疟疾的策略而被测试。 6.Cell:新研究揭示结核杆菌的脆弱性基因和非脆弱性基因 doi:10.1016/j.cell.2021.06.033 开发防治结核病的药物可能是一件令人沮丧的事情。一旦发现对细菌的生命周期至关重要的基因,科学家们急于开发抑制该靶标的药物,然后是失望。一系列靶向必需基因靶标的化合物对结核杆菌的生长几乎没有影响。这种细菌继续生存。科学家们又回到了原点。如今,一项新的研究有助于解释为何基于靶标的抗生素在起步阶段遇到如此多的麻烦。一个答案是,必需基因靶标在对抗生素的脆弱程度上有所不同。来自美国洛克菲勒大学和威尔康乃尔医学院的研究人员发现,理想的靶标是如此容易受到攻击,以至于当它被轻微抑制时,细胞就无法生存。另一方面,非脆弱性基因(invulnerable gene)可以经受住几乎完全的抑制,在遭受抗生素的攻击时也能勉强维持足够的靶标活性而使细胞存活。此外,这些作者首次对病原体的脆弱性进行了量化,产生了一个指数,用于根据使基因失效并使细胞瘫痪所需的抑制量对结核杆菌中的几乎每一个必需基因进行排名。相关研究结果于2021年7月22日在线发表在Cell期刊上,论文标题为“Genome-wide gene expression tuning reveals diverse vulnerabilities of M.tuberculosis”。 Rock和他的团队决定对结核杆菌的基因脆弱性进行量化,这种病原体每年夺走140万人的生命。他们开发了一种基于CRISPR干扰(CRISPRi)的功能性基因组学方法,一次性查看这种病原体的整个基因组,并根据为了杀死这种细菌每个必需基因需要被抑制的程度对其进行排名。 论文共同第一作者、Rock实验室医生科学家Barbara Bosch说,“我们开发了一种可以调整的系统,从没有抑制到几乎100%的抑制。这使我们能够确定这种细菌是否有严重的适应度成本(fitness cost),或者它们是否仍然活着和活跃。” 由此产生的脆弱性指数,将抑制百分比与细菌的适应度联系起来,表明脆弱性是决定抗生素是否成功的一个关键因素。例如,两个最脆弱的基因恰好也是市场上两种最强效的抗结核病药物的靶标。相反,两个最不脆弱的基因,即coaA和def,曾经是很有希望的药物靶标,但是靶向这些基因的抗生素却未能杀死这种细菌。这些靶标的非脆弱性可能是这些药物失败的一个原因。 这种脆弱性指数还确定了几个新的靶标,这些靶标是必需的,高度脆弱的,而且是药物开发商尚未探索的。其中的一些靶标甚至比目前的一线抗结核病药物更脆弱,并令人吃惊地影响着细胞中的各种活动。 查看详细>>

来源: 点击量:4

3 2021年6月HIV研究亮点进展l 2021-07-05

人类免疫缺陷病毒(human immunodeficiency virus,HIV),即艾滋病(AIDS,获得性免疫缺陷综合征)病毒,是造成人类免疫系统缺陷的一种病毒。1983年,HIV在美国首次发现。它是一种感染人类免疫系统细胞的慢病毒(lentivirus),属逆转录病毒的一种。HIV通过破坏人体的T淋巴细胞,进而阻断细胞免疫和体液免疫过程,导致免疫系统瘫痪,从而致使各种疾病在人体内蔓延,最终导致艾滋病。由于HIV的变异极其迅速,难以生产特异性疫苗,至今无有效治疗方法,对人类健康造成极大威胁。 自上世纪八十年代以来,艾滋病的流行已经夺去超过3400万人的生命。据世界卫生组织(WHO)统计,据估计,2017年,全世界有3690万人感染上HIV,其中仅59%的HIV感染者接受抗逆转录病毒疗法(ART)治疗。目前为止HIV仍然是全球最大的公共卫生挑战之一,因此急需深入研究HIV的功能,以帮助研究人员开发出可以有效对抗这种疾病的新疗法。为阻止病毒大量复制对免疫系统造成损害,HIV感染者需要每天甚至终身服用ART。虽然服用ART已被证明能有效抑制艾滋病发作,但这类药物价格昂贵、耗时耗力且副作用严重。人们急需找到治愈HIV感染的方法。 即将过去的6月份,有哪些重大的HIV研究或发现呢? 1.Nat Med:HIV感染者或许患年龄相关的遗传改变的风险较高 doi:10.1038/s41591-021-01357-y HIV感染者相比非感染者而言往往会出现一些合并症,特别是心血管疾病和癌症,但研究人员并不是非常清楚HIV感染者在机体衰老过程中所发生的生物学过程和改变。近日,一篇发表在国际杂志Nature Medicine上题为“HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults”的研究报告中,来自新南威尔士大学悉尼分校等机构的科学家们通过研究揭开了HIV感染和机体衰老之间的关键关联。 在这项世界范围内的研究中,研究人员对来自医院和社区中9个地点共400多名参与者机体中与年龄相关的遗传改变进行了评估,其中一半参与者为HIV感染者,另一半为非感染者。研究人员发现,HIV感染者机体中的克隆性造血(CH,clonal haematopoiesis)比率较高,而CH是老年人最常见的一种疾病,其是少数血液干细胞的遗传突变所引起。研究者Nila Dharan博士说道,在一般人群中,十分之一的老年人机体中的血细胞都会存在这些突变,但本文研究结果表明,五分之一的HIV感染者也携带有这些突变。 本文研究重点围绕阐明HIV感染、炎症和机体衰老之间的关联;HIV会攻击淋巴结和淋巴组织中的细胞,从而就会诱发炎症,与此同时,HIV疗法能够减缓这一过程,HIV感染者相比未感染者而言机体中往往存在较高的炎性水平。本文研究结果表明,HIV感染者和克隆性造血人群机体中往往有着较高的炎性标志物,这就表明,HIV感染者机体中的慢性炎症表现或许会创造一种环境来促进克隆性造血突变的出现;由于炎症水平的增加会作为机体衰老过程的一部分,而HIV感染的老年人则存在多种风险因素来导致造血性克隆的发生。 本文研究有望帮助研究人员揭示HIV感染的老年人机体中的生物学改变情况,同时还为未来研究提供了一定的方向。如今本文研究结果表明,HIV感染者机体中发展为克隆性造血突变的机会较大,然而重要的是,研究人员并未发现,HIV和克隆性造血患者有着更差的不良健康后果,这或许还需要后期深入的研究才能阐明。由于很多因素能帮助确定是否HIV感染者或非感染者会患上中风、心血管疾病或血液癌症,这些因素包括年龄、性别、诸如抽烟等生活方式,因此科学家们后期还需要深入研究来理解克隆性造血在所有这些因素中所扮演的关键角色。 2.Nat Commun:揭示IP6分子在劳斯肉瘤病毒衣壳组装中起着重要作用 doi:10.1038/s41467-021-23506-0 了解病毒生命周期的每一个步骤对于确定潜在的治疗靶标至关重要。如今,在一项新的研究中,来自奥地利科学技术研究所的研究人员能够展示一种来自逆转录病毒家族(HIV病毒也属于逆转录病毒家族)的病毒---劳斯肉瘤病毒(Rous sarcoma virus,RSV)---如何保护它的遗传信息并变得具有传染性。此外,他们还展示了这种病毒的一种意想不到的灵活性。相关研究结果近期发表在Nature Communications期刊上,论文标题为“Structure of the mature Rous sarcoma virus lattice reveals arole for IP6 in the formation of the capsid hexamer”。 病毒是完美的分子机器。它们的唯一目标是将它们的遗传物质插入健康的细胞中,从而进行增殖。由于具有致命的精确性,它们可以导致数百万人死亡的疾病,并使世界处于紧张状态。这样的一个例子是导致全球艾滋病流行的HIV病毒。尽管近年来取得了进展,但仅在2019年就有69万人因感染HIV而死亡。论文第一作者、奥地利科学技术研究所Florian Schur团队的博士后研究员Martin Obr说,“如果你想了解敌人,你必须了解它所有的朋友。”因此,他与他的同事们一起研究一种与HIV同属一个家族的病毒---劳斯肉瘤病毒,它是一种在家禽中引起癌症的病毒。在它的帮助下,他如今对一种小分子在这些类型的病毒的组装中所扮演的重要角色有了新的认识。 在这项新的研究中,Schur团队与康奈尔大学和密苏里大学的合作者一起将重点放在逆转录病毒复制的后期阶段。Obr解释说,“从一个被感染的细胞到能够感染另一个细胞的成熟病毒颗粒,这是一条漫长的道路。”一个新的病毒颗粒从细胞中出芽,处于不成熟、没有传染性的状态。然后,它在它的遗传信息周围形成一个保护性的外壳,即所谓的衣壳,并变得具有传染性。这个保护性外壳由衣壳蛋白(capsid protein)组成,该蛋白可组装成六聚体和一些五聚体。这些作者发现,一种名为肌醇六磷酸(Inositol hexakisphosphate,IP6)的小分子在稳定化劳斯肉瘤病毒内的蛋白外壳方面发挥着重要作用。 Schur说,“如果这种保护性外壳不稳定,这种病毒的遗传信息可能会过早释放,并将被破坏,但是如果它太稳定,它的基因组根本无法释放出来,因而变得毫无用处。”在之前的一项研究中,他和他的同事们能够证实IP6在HIV的组装过程中很重要。如今,该团队证明了它在其他逆转录病毒中的重要性,这就表明这种小分子在逆转录病毒的生命周期中是多么重要。 3.Nature Medicine:深度学习快速检测艾滋病 doi:10.1038/s41591-021-01384-9 尽管深度学习算法在疾病诊断方面显示出越来越大的前景,但在该领域执行的快速诊断测试中,它们的使用尚未得到广泛测试。Nature Medicine杂志发表文章,使用深度学习对在南非农村获得的快速人体免疫缺陷病毒(HIV)检测图像进行分类。使用三星SM-P585平板电脑新开发的图像采集协议,60名现场工作人员定期收集艾滋病毒横向流动测试的图像。 从11374张图像中,训练深度学习算法来将测试分类为阳性或阴性。对作为移动应用部署的算法进行的试点现场研究表明,与由有经验的护士和新培训的社区卫生工作者进行的传统目视解译相比,该算法具有很高的敏感性(97.8%)和特异性(100%),并减少了假阳性和假阴性的数量。 总之,该研究经证明了深度学习对RDT图像的准确分类的潜力,其整体性能的准确率为98.9%,明显高于研究参与者的传统视觉解释(92.1%),而报告的准确率为80-97%。鉴于每年进行1亿次艾滋病毒检测,质量保证方面哪怕是很小的改进,也会减少计划生育和FN的风险,从而影响数百万人的生活。该研究证明了深度学习模型可以部署在现场的移动设备上,而不需要适配器或其他附件。它为基于深度学习的放心诊断奠定了基础,证明了与移动设备连接的RDTs可以为决策者实现测试结果的捕获和解释标准化,减少解释和转录错误以及劳动力培训。研究结果基于对现场工作者、护士和社区卫生工作者的艾滋病毒检测决策支持,但未来可能适用于对自我检测的决策支持。该研究以艾滋病毒为例进行了重点研究,但分类器适应两种不同测试类型的能力表明,它能够适应涵盖传染性和非传染性疾病的大量RDTs。该平台可用于人员培训、质量保证、决策支持和移动连接,为疾病控制战略提供信息,加强医疗保健系统效率,改善患者结果和疫情管理。理想的连接系统将连接的RDT与实验室系统连接起来,通过远程监测RDT的功能和使用,也可以使卫生项目优化测试部署和供应管理,以实现可持续发展目标,并确保没有人掉队。联网RDT的实时预警能力还可以通过绘制包括COVID-19在内的流行病“热点”,支持公共卫生疫情管理,以保护民众。 4.NEJM:艾滋病人群心源性猝死机率更高 doi:10.1056/NEJMoa1914279 2021年6月17日,加州大学旧金山分校发表在新英格兰医学杂志(NEJM)上的研究显示,与普通人群相比,感染HIV的个体死于心源性猝死(SCD)的可能性是普通人群的两倍以上,并且心脏因纤维化而受损的可能性更大,这一因素可能会增加他们对SCD的易感性。 POST SCD是加州大学旧金山分校医学系心脏电生理学家和教授Tseng课题。Tseng的主要研究兴趣是发现心脏性猝死(心脏病导致的主要死亡原因)的遗传、分子或其他风险因素,这些因素可用于预测哪些人最有可能从预防性干预措施中受益,例如植入心脏除颤器。 在该研究中,Tseng和他的团队将医疗和EMS记录的全面审查与完整的尸检(包括组织学和毒理学)相结合,目的是揭示HIV环境中猝死的真正根本原因。 研究人员在2011年2月1日至2016年9月16日期间,前瞻性地确定了18至90岁人群中所有因院外心脏骤停而导致的新死亡,进行全面尸检和毒理学和组织学测试。比较了组间心源性猝死和心律失常引起的猝死率。 在610例HIV阳性者意外死亡中,109例死于院外心脏骤停,其中48例符合世界卫生组织推定的心源性猝死标准;其中,不到一半(22)有心律失常的原因。2011年2月1日至2014年3月1日期间,共有505例推定的心脏猝死发生在没有已知HIV感染的人群中。观察到的假定心源性猝死发生率在已知HIV感染者中为每100,000人年53.3例死亡,在未感染HIV者中为每100,000人年23.7例死亡(发病率比,2.25;95%置信区间[CI],1.37-3.70)。观察到的由心律失常引起的猝死发生率分别为每100,000人年25.0和13.3例死亡(发生率比,1.87;95%CI,0.93-3.78)。在所有假定的心源性猝死中,已知HIV感染者比未感染HIV者更常见因神秘药物过量导致的死亡(34%VS 13%)。HIV阳性者的间质性心肌纤维化组织学水平高于未感染HIV的人。 5.JAHA:抑郁是HIV感染者发生缺血性卒中的危险因素 doi:10.1161/JAHA.119.017637 HIV感染和抑郁症均与缺血性卒中风险增加相关。抑郁症是否是HIV感染人群方式卒中的危险因素尚未明确。近日,心血管疾病领域权威杂志JAHA上发表了一篇研究文章,研究人员旨在分析2003年4月1日至12月31日期间来自于HIV阳性人群和匹配的未感染退伍军人观察队列中基线无心血管疾病的106333名(33528名HIV阳性;72805名HIV阴性)参与者的数据。研究人员根据来自医疗记录中的国际疾病分类第九版(ICD-9)代码确定了基线抑郁症和卒中事件。 19.5%的HIV阳性者患有抑郁症。经过中位9.2年的随访,同时伴有HIV和抑郁症的参与者卒中发生率最高,而两者都没有的参与者的卒中发生率最低。在Cox比例风险模型中,调整了社会人口学特征和脑血管危险因素后,抑郁症与HIV阳性参与者卒中风险增加相关(风险比[HR]为1.18;95%CI为1.03-1.34)。抑郁症与卒中的关联程度因酒精使用障碍、可卡因使用和基线抗抑郁药使用而有所减弱,并且不受联合抗逆转录病毒治疗或单独使用抗逆转录病毒药物的影响。在年龄小于60岁的人群中,研究人员发现卒中时抑郁的HR在数值上更高。 6.DCR:CD4/CD8比率可以作为感染HIV患者中高度肛门发育不良和肛门癌高风险的依据 doi:10.1097/DCR.0000000000002009 在美国,退伍军人中的HIV感染率是所有人群中比例最高的。因此,在美国,医生建议所有感染HIV的退伍军人筛查肛门发育不良以及肛门癌症的发生情况。但是肛门检查具有侵入性以及依从性较差的缺点,因此,本项研究旨在探究晚期肛门疾病(高度不典型增生和肛门癌)的患病率,并确定CD4/CD8比率是否与此相关。 这是一项针对感染HIV的退伍军人的回顾性队列研究,研究人员将处于肛门部不典型增生晚期的患者与非晚期肛门病理患者进行比较。Logistic回归模型用于估计患癌疾病的几率。评估了每个队列中最低(最低点)CD4/CD8和最接近的CD4/CD8比率。 本项研究共纳入了2267名退伍军人。15%有肛门病变(112人为晚期疾病(37人为癌症,75人为高级别瘤变),222人为非晚期疾病)。晚期疾病患者与非晚期患者的CD4/CD8最低点和最接近比率较低(0.24对0.45(p<0.001)和0.50对0.88(p<0.001))。在调整后的模型中,最低点或最接近比率增加1个单位可降低晚期疾病的风险(OR=0.19(95%CI,0.07–0.53);p<0.001;OR=0.22(95%CI,0.12–0.43);p<0.001)。使用最小敏感性分析,可以使用0.42的临界最低点比率来进行风险分层。 本项研究发现5%的HIV阳性人群存在晚期肛门癌变疾病。该队列中晚期疾病的一个强有力的预测指标是CD4/CD8比率。使用CD4/CD8进行风险分层有可能减少对低风险患者进行频繁的侵入性检查。 7.JGH:中国HIV感染者代谢相关性脂肪肝的患病率及危险因素分析 doi:10.1111/jgh.15320 非酒精性脂肪性肝病(NAFLD),而不是丙型肝炎或乙型肝炎是目前HIV感染者(PLWH)中最常见的肝脏疾病。NAFLD的特点是在缺乏高脂饮食的情况下,肝细胞中脂肪变性的比例大于5%。研究报告指出,非酒精性脂肪肝(NAFLD)在HIV感染者中的患病率较高,比例从13%到65%不等。HIV感染者发生NAFLD的风险高于一般人群因为持续的HIV相关免疫激活,终生接触ART药物治疗和机体代谢紊乱等等。但是究竟何种因素占了主导作用仍然未知,因此,本项研究旨在对HIV感染者(PLWH)中代谢性脂肪肝病(NAFLD)的患病率和危险因素进行了相关研究。 在这项横断面研究中,进行肝脏检测的瞬时弹性成像是在没有大量饮酒和乙型肝炎病毒和丙型肝炎病毒感染的PLWH中进行的。NAFLD被瞬态弹性成像诊断为受控衰减参数(CAP)≥248 dB/m,MAFLD根据2020年国际共识进行定义。晚期纤维化定义为肝脏硬度测量值(LSM)≥10 kPa。 被纳入的361名PLWH中,NAFLD和MAFLD的患病率分别为37.67%和34.90%。与非MAFLD组相比,MAFLD组丙氨酸氨基转移酶(ALT)水平升高(44.44%vs 16.17%,P<0.001),晚期纤维化更严重(19.05%vs 2.55%,P<0.001).在MAFLD组中发现LSM和CAP值之间呈正相关(r=0.350,P<0.001),但在非MAFLD组中没有这样的现象。在多变量分析中,MAFLD的独立风险预测因子是较高的ALT水平([OR]1.015,95%[CI]1.003–1.028,P=0.018)、较高的尿酸(OR 1.005,95%CI 1.002–1.009,P=0.003)、较高的总胆固醇(OR 1.406,95%CI 1.029–1.921,P=0.032)。 本项研究证实感染HIV的患者有三分之一患有MAFLD,这与NAFLD的患病率高度一致。因此,临床医生需要在HIV感染患者中对MAFLD进行常规筛查,改善这部分患者的预后。 8.Sci Adv:科学家揭秘趋化因子激动剂激活CCR5的结构基础和分子机制 doi:10.1126/sciadv.abg8685 人类CC趋化因子受体5(CCR5)是一种G蛋白偶联受体(GPCR),其在炎症发生过程中扮演着关键角色,同时还参与到了癌症、HIV和COVID-19的发病过程中,尽管其作为一种药物靶点非常重要,但CCR5的分子激活机制,即趋化因子饥激动剂如何通过受体来传递激活信号,目前研究人员并不清楚。位于许多免疫细胞表面的趋化因子受体在细胞功能发挥上扮演着关键角色,而趋化因子是一类能结合这些受体并控制白细胞运动和行为的小型蛋白。 尽管该趋化因子受体家族非常重要,但研究人员并不清楚其被激活的机制,近日,一篇刊登在国际杂志Science Advances上题为“Structural basis of the activation of the CC chemokine receptor 5by achemokine agonist”的研究报告中,来自瑞士巴塞尔大学等机构的科学家们通过研究成功解析了CCR5受体的激活机制,相关研究结果或为深入理解趋化因子受体的生物学特性迈出了重要一步,也为开发针对这一重要受体家族的新型药物提供了新的思路和希望。 CCR5在机体炎症和免疫防御功能发挥上扮演着关键角色,长期以来其一直被认为是开发抗HIV药物的重要靶点,研究者Stephan Grzesiek解释道,我们对CCR5的研究要追溯到25年前,其是抗击AIDS重要的一部分;同时其的确也是HIV感染机制的重要基础,但其在许多其它病理学过程中似乎也非常重要,特别是癌症和炎性疾病。然而,为了深入利用CCR5进行治疗目的,我们就需要在原子水平上理解如何通过与其趋化因子结合从而发挥激活作用。 截止到目前为止,对这一现象的研究一直受到了阻碍,因为研究人员很难观察到该受体与激活它的分子结合时的3D结构,为此,研究人员就利用低温冷冻电镜技术进行了相关研究,该技术能保存并观察生物体内的最小元素结构;为了理解整个过程,研究人员非常有必要利用与受体结合且比天然受体更加稳定的工程化趋化因子,为此研究人员就能利用在HIV药物研究过程中所发现的分子,而事实上,这些突变体会过度激活受体,而另一些则会完全阻断这些受体的功能。 嵌入到细胞膜中的受体就好像“锁子和钥匙”的机制一样发挥作用,趋化因子结构的一个特定部分必须适应CCR5锁来激活受体结构的变化,随后就会诱发白细胞的激活和迁移,趋化因子的激活能力受到了特定氨基酸的影响,这些氨基酸必须以特定的模式进行排列;而如果趋化因子的这部分采用了直线形状,其就能够成功激活受体的表达;但如果氨基酸被改变,分子就会采用略微不同的形状,尽管其与受体保持着非常牢固的结合作用,但却会阻断它的激活,因此这些微小的改变就会使得受体激活剂和抑制剂之间存在一定的差异。 查看详细>>

来源: 点击量:81

4 2021年6月CRISPR/Cas最新研究进展 2021-07-05

基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。2020年10月,德国马克斯-普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A.Doudna博士因在CRISPR-Cas9基因编辑方面做了的贡献荣获2020年诺贝尔化学奖。 CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 即将过去的6月份,有哪些重大的CRISPR/Cas研究或发现呢? 1.Science子刊:利用脂质体纳米颗粒递送靶向IL1RAP基因的CRISPR/Cas9,可让白血病干细胞无处可逃 doi:10.1126/sciadv.abg3217 急性骨髓性白血病(AML)是一种侵袭性的血癌,只有28%的AML患者能够存活5年。作为一种异质性血液恶性肿瘤,AML以异常增殖和分化受损为特征,是成人急性白血病的主要类型,在美国所有白血病亚型中死亡人数最多。 在一项新的研究中,来自美国和韩国的研究人员开发出一种攻击白血病的最新方法,该方法有点像消灭蟑螂。它是一个三步骤过程:使用尖端技术诱导、诱捕和杀死白血病细胞的根源:白血病干细胞(leukemia stem cell,LSC),又称为白血病起始细胞(leukemia-initiating cell,LIC)。这一发现对于治疗AML患者具有重要的临床意义。相关研究结果近期发表在Sciences Advances期刊上,论文标题为“Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy”。 这些作者开发的这种新方法使用可以编辑细胞内基因的CRISPR/Cas9技术。具体而言,他们使用一种生物还原性脂质体封装的Cas9/单向导RNA(sgRNA)核糖核蛋白[脂质体纳米颗粒(LNP)-Cas9 RNP]来靶向人类LSC中的关键基因:白细胞介素-1受体辅助蛋白(IL1RAP)。为了增强对LSC的靶向性,他们将LNP-Cas9 RNP和趋化因子CXCL12α装载到模拟骨髓微环境的涂有间充质干细胞膜的纳米纤丝(mesenchymal stem cell membrane–coated nanofibril,MSCM-NF)支架上。 在体外,CXCL12α释放诱导LSC迁移到MSCM-NF支架上,LNP-Cas9 RNP就高效地对LSC中的IL1RAP基因进行编辑,从而实现IL1RAP基因敲除。IL1RAP基因敲除会降低LSC集落生成能力和白血病负荷。基于MSCM-NF支架的递送可增加LNP-Cas9在骨髓腔中的停留时间。总之,通过装载CXCL12α的LNP/MSCM-NF支架局部持续递送Cas9/IL1RAP sgRNA提供了一种高效减少LSC生长的策略,从而改善AML疗法。 2.NEJM:科学家进行首个人类临床试验利用CRISPR-Cas9基因魔剪来剔除编码甲状腺素运载蛋白淀粉样变性的基因 doi:10.1056/NEJMoa2107454 转甲状腺素淀粉样变性(Transthyretin amyloidosis)又称为ATTR淀粉样变性,其是一种威胁患者生命的疾病,主要特点表现为错误折叠的转甲状腺素蛋白(TTR)在组织中逐渐积累,主要表现为神经组织和心脏组织。NTLA-2001是一种体内进行基因编辑的治疗性制剂,其主要通过降低血清中TTR的浓度来治疗ATTR淀粉样变性,其基于CRISPR-Cas9而被开发,主要包括一个包裹编码Cas9蛋白的信使RNA的脂质纳米颗粒和一个靶向作用TTR的单一导向RNA分子。 近日,一篇发表在国际杂志New England Journal of Medicine上题为“CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis”的研究报告中,来自英国伦敦大学学院等机构的科学家们通过研究进行了首个涉及在体内利用CRISPR对人类基因编辑的临床试验;文章中,研究者所开发的这种CRISPR技术能帮助治疗ATTR淀粉样变性患者,同时研究人员还对6名患者注射了名为NTLA-2001的疗法以作为1期临场试验的一部分。 这种疗法由携带基因组编辑器至肝脏的脂质纳米颗粒组成,该过程的读一部分涉及对所有编辑的基因进行指导,而第二部分则涉及利用RNA信息来传递进行基因编辑。在试验中,患者被分为多组,每一种都接受不同剂量的NTLA-2001疗法,随后对患者进行测试的结果显示,那些接受0.1mg剂量疗法的患者机体中TTR蛋白的水平下降了52%,而接受0.3mg剂量的患者机体中TTR的水平则平均下降了87%。 3.Sci Adv:新型药物分子或能杀灭并限制肠癌细胞的再生和进展 doi:10.1126/sciadv.abf2567 肠癌是澳大利亚普通人群第二大致命性的癌症,每周大约都有300名澳大利亚人被诊断为这类癌症,而且有超过100人会死于这种疾病;在澳大利亚,女性患肠癌的风险大约为8%,而男性则为10%。Wnt/β-连环蛋白的异常激活或许是结直肠癌生长的关键驱动因素,而且在临床上具有重要的治疗意义。 近日,一篇发表在国际杂志Science Advances上题为“Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer”的研究报告中,来自哈德逊医学研究所等机构的科学家们通过研究发现,正在试验的一种白血病药物或有望帮助抵御肠癌。 本文研究中,研究人员在全球首次利用诺贝尔医学或生理学奖得主所开发的CRISRP基因编辑技术进行研究后发现,一种白血病药物或有望帮助抵御肠癌。文章中,研究人员利用CRISRP技术识别了肠癌肿瘤的新型靶点,这时候他们发现了一种与急性髓性白血病相关的基因KMT2A或能促进肠癌进展,其会通过促进肿瘤的失控生长来发挥作用,同时还能推动癌细胞进行自我更新,并抑制肿瘤的消退或分化。 随后研究者利用两种抑制KMT2A基因表达的制剂进行了相关研究,结果发现,这些药物能阻断肠癌生长和自我更新,但同时对正常细胞的损伤较小;这些抑制剂与目前在临床上使用的用于治疗白血病的制剂非常相似。研究者Chunhua Wan说道,靶向作用KMT2A基因或能逆转肠癌细胞的侵袭性和攻击性,并能重新对其进行教育来使其转变为正常细胞。 4.Nat Commun:基因组研究或能揭示潜在的组合性疗法或能有效治疗三阴性乳腺癌 doi:10.1038/s41467-021-23316-4 乳腺癌是全球女性因癌症死亡的主要原因,每天全球都有大约1700人因该病而死亡;尽管绝大多数乳腺癌都是可以治疗的,但最具侵袭性的乳腺癌亚型—三阴性乳腺癌(TNBC)具有较高的复发率、转移潜力大,且往往会对常规疗法产生一定的耐受性,从而导致患者预后和生存质量较差。近日,一篇发表在国际杂志Nature Communications上题为“In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy”的研究报告中,来自麦吉尔大学健康中心等机构的科学家们通过进行一项临床前研究发现,一种新型的靶向性组合性疗法或能有效降低转移性乳腺癌患者的肿瘤生长,相关研究结果有望帮助开发治疗三阴性乳腺癌的新型一线靶向性疗法,并有望迅速过渡到人体的临床试验阶段。 研究者Jean-Jacques Lebrun说道,目前针对三阴性乳腺癌并没有靶向性疗法,化疗治疗甚至还会使得这些肿瘤富含癌症干细胞,且会对患者带来不利影响,正如我们在此前研究中观察到的那样。虽然大多数乳腺癌都有三种常见的主要受体中的一种,这就好像疗法的入门闸口一样,即雌激素受体、孕激素受体和一种称之为人类表皮生长因子受体(HER2)的蛋白质,但三阴性乳腺癌并没有上述三种受体,这类乳腺癌亚型因此而得名;利用诸如基因编辑和全基因组分子方法,研究人员识别出了两种通路或能在治疗性策略中被靶向作用。 研究人员的研究发现超出了他们的预期,这两种药物能以协同的方式来发挥作用,而且利用细胞和患者机体衍生的异种移植模型进行研究后他们发现,这两种药物或能有效减少肿瘤在体内和体外的生长。实验中,研究人员注意到,维替泊芬或能通过细胞凋亡来诱导细胞死亡,而另一方面Torin1则是通过一种非细胞凋亡的机制—巨胞饮(macropinocytosis)的过程来诱发细胞死亡,巨胞饮是一种被称为“细胞饮水”的内吞过程,其能允许细胞外的所有营养物质和液体内吞入细胞,最终导致细胞内爆以及灾难性的细胞死亡。 5.Nature:重大进展!利用碱基编辑让致病性血红蛋白无害化,有望治疗镰状细胞病 doi:10.1038/s41586-021-03609-w 人体内的血红蛋白是红细胞中运输氧气的特殊蛋白质,由珠蛋白和血红素组成。珠蛋白含有4个亚基(α2β2),每个亚基连接1个称为血红素的辅基分子。血红蛋白基因(HBB)的点突变导致异常血红蛋白的产生。已发现数百种异常血红蛋白,其中只有一小部分引起疾病发生,最常见也最了解的疾病是镰状细胞病(SCD)。SCD是一种常见的致命性常染色体隐性遗传病,由HBB基因突变引起。这种疾病每年影响全世界30多万名新生儿。它导致了患者的慢性疼痛、器官衰竭和早期死亡。 在一项新的研究中,由来自美国布罗德研究所和圣犹大儿童研究医院的研究人员领导的一个研究团队证实一种碱基编辑方法能够高效地校正患者造血干细胞中和小鼠体内导致SCD的基因突变。这种基因编辑治疗利用碱基编辑将致病性的血红蛋白基因转化为良性的基因变体,挽救了SCD动物模型中的疾病症状,使健康的血细胞得以持久地产生。相关研究结果于2021年6月2日在线发表在Nature期刊上,论文标题为“Base editing of haematopoietic stem cells rescues sickle cell disease in mice”。 SCD的根源是患者携带血红蛋白基因HBB的两个突变拷贝。这两个突变拷贝导致红细胞从圆盘状转变为镰刀状,引发一连串事件,最终导致器官损伤、复发性疼痛和早期死亡。在这项研究中,这些作者使用了一种称为碱基编辑的分子技术,在人类造血干细胞中和SCD小鼠模型体内直接将致病性的HBB基因(HBBS)转换成无害的望加锡(Makassar)HBB基因变体(HBBG)。 论文共同通讯作者、布罗德研究所梅金医疗转化技术研究所主任、哈佛大学教授、霍华德-休斯医学研究所研究员David Liu说,“我们能够在细胞模型和动物模型中使用定制的碱基编辑器来校正致病性的基因变体,而不需要诱导双链DNA断裂或在基因组中插入新的DNA片段。这是一项重大的团队努力,我们希望碱基编辑将为SCD治疗策略提供一个有希望的基础。我们的研究说明了多学科合作在开发基于机制的新型遗传疾病治疗方法方面的力量和和兴奋点。特别是,我们结合了蛋白质工程、碱基编辑和红血球生物学方面的专业知识,从而构建出一种治疗和可能治愈SCD的新方法。” 6.Science:中美科学家揭示耶尔森菌感染诱导宿主细胞焦亡机制 doi:10.1126/science.abg0269 致病菌采用了多种策略来破坏宿主的先天免疫信号以促进其感染。以前的研究显示,耶尔森菌效应蛋白YopJ靶向并抑制TAK1(transforming growth factor-β–activated kinase 1,转化生长因子-β活化激酶1)以阻止促炎性细胞因子的产生。为了反击,宿主细胞通过启动RIPK1(receptor-interacting serine/threonine-protein kinase 1,受体相互作用丝氨酸/苏氨酸蛋白激酶1)依赖性的caspase-8引导的gasdermin D(GSDMD)裂解而触发细胞焦亡(pyroptosis)。然而,RIPK1-caspase-8-GSDMD轴在耶尔森菌感染期间如何被指导仍然是未知的。 在一项新的研究中,来自中国科学院、中国科学院大学、美国波士顿儿童医院和哈佛医学院的研究人员通过无偏见的CRISPR筛选发现了溶酶体膜驻留的Rag-Ragulator复合物在耶尔森菌感染触发的细胞焦亡中的关键和意外作用。相关研究结果发表在2021年6月25日的Science期刊上,论文标题为“The lysosomal Rag-Ragulator complex licenses RIPK1–and caspase-8–mediated pyroptosis by Yersinia”。 这些作者发现,Rag-Ragulator复合物成分的缺失使得宿主细胞不能应对耶尔森菌感染诱导的细胞焦亡,这表明Rag-Ragulator复合物在caspase-8介导的细胞焦亡中发挥着重要作用。此外,他们发现,在感染致病性耶尔森菌或其模拟物(脂多糖加TAK1抑制剂)后,含有FADD-RIPK1-caspase-8的复合物通过Rag-Ragulator复合物被招募到溶酶体膜,这一过程取决于Rag GTP酶的活性和Rag-Ragulator的溶酶体结合,但不取决于Ragulator激活的mTORC1(mechanistic target of rapamycin complex 1)。 这项研究揭示了Rag-Ragulator在耶尔森氏菌感染期间由TAK1抑制诱导的细胞焦亡中的关键作用。Rag-Ragulator在caspase-8介导的细胞焦亡中的新作用证实了它作为监测环境线索的中心枢纽的关键功能,这不仅决定细胞是否增殖,也可以决定细胞是否存活。 7.Nat Med:工程化的酵母益生菌或有望帮助治疗人类炎性肠病 doi:10.1038/s41591-021-01390-x 炎性肠病(IBD,Inflammatory bowel disease)是机体胃肠道的一种复杂慢性炎性障碍,由机体共生微生物和宿主细胞所产生的胞外三磷酸腺苷(eATP)能够激活嘌呤信号,并促进肠道炎症和病理学表现。生活在人类肠道中的微生物世界会对人类健康产生深远的影响,包括炎性肠病在内的多种疾病都与这些微生物的平衡有关,这表明,恢复微生物菌群正确的平衡或能帮助治疗疾病,目前市场上的许多益生菌(包括活的酵母菌和细菌)已经在健康肠道的背景下通过进化得到了一定的优化;然而,为了治疗诸如炎性肠病等复杂的人类疾病,研究人员就需要利用益生菌来发挥多种功能,包括关闭炎症的能力、逆转损伤且恢复肠道微生物组的功能。近日,一篇发表在国际杂志Nature Medicine上题为“Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease”的研究报告中,来自多伦多大学等机构的科学家们通过研究开发了一种“设计者益生菌”,这种经过改造的工程化酵母菌或能帮助诱导多种治疗炎性肠病的多种效应。 这篇研究报告中,研究人员利用酿酒酵母(Saccharomyces cerevisiae)开发了特殊的益生菌,在基因魔剪CRISPR/Cas9的帮助下,研究人员引入了能感知炎症并对其产生反应的遗传元件,其能通过分泌特殊酶类来降解参与机体炎症发生的关键分子。这种工程化的酵母菌能分泌多种水平的酶类,这主要取决于肠道某个位置所存在的炎性信号的水平,这就意味着这种益生菌或许会对炎症产生一种高度局部化的反应;在小鼠机体中,这种工程化的酵母菌能成功抑制肠道炎症,并降低纤维化发生且能恢复肠道微生物组的平衡。 为了将这种新型治疗性平台引入用以治疗炎性肠病和其它人类疾病,研究者Quintana及其同事就需要进行安全性研究;下一步他们计划不断优化并检测这种工程化的酵母菌是否能加速机体的组织修复(除了治疗炎性肠病外),目前研究者们正在调查是否能利用工程化的益生菌来治疗癌症免疫疗法所产生的副作用—结肠炎。研究人员想利用这种合成生物学工具设计出在自然界能够找到的东西;通过对益生菌进行工程化修饰,研究者旨在产生更多个体化、局部化且高度受控的疗法来治疗肠道及其以外组织所出现的疾病。 8.Theranostics:血清素/HTR1E信号阻断慢性应激促进的卵巢癌进展 doi:10.7150/thno.58956 许多流行病学和临床研究表明,心理应激与癌症的发展和对治疗的抵触有关。应激激素,尤其是糖皮质激素诱导的免疫抑制微环境已被广泛研究。然而,其他与应激相关的神经递质,如5-羟色胺(5-羟色胺,5-HT),对癌症发展的影响才刚刚开始显现。在本研究中,作者的目的是确定新的神经递质参与应激诱导卵巢癌(OC)的生长和扩散,并揭示主要的潜在信号通路和治疗意义。最终作者发现了5-羟色胺/HTR1E信号在预防慢性心理应激促进的OC进展中的重要作用,提示HTR1E特异性激动剂和SRC抑制剂对遭受心理应激的OC患者有潜在的治疗价值。 在原位OC小鼠模型的全基因组CRISPR/Cas9基因敲除筛选中,作者发现一个5-羟色胺受体,即HTR1E,位于前十个候选基因之列。本研究将应激模型与卵巢癌原位小鼠模型相结合,揭示了HTR1E介导的5-羟色胺下游信号转导在抑制卵巢癌生长和腹膜播散中的重要作用,为应激促进卵巢癌进展提供了新的机制。 在卵巢5-羟色胺的GPCRs中,HTR1E的高表达与致癌的SRC信号负偶联,抑制SRC激活的下游通路,包括MEK-ERK、PI3K-AKT和FAK,最终导致抑制细胞的增殖、迁移和EMT过程,从而有利于OC的生长和扩散。慢性应激导致卵巢局部5-羟色胺减少或HTR1E表达减少将减弱HTR1E对SRC激活的抑制作用,导致OC生长和扩散增加。用特异性HTR1E激动剂或特异性SRC抑制剂重新激活5-羟色胺/HTR1E信号是抑制慢性应激促进的OC生长和扩散的一种有前途的策略。 查看详细>>

来源: 点击量:80

5 2021年5月CRISPR/Cas最新研究进展 2021-06-01

基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。2020年10月,德国马克斯-普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A.Doudna博士因在CRISPR-Cas9基因编辑方面做了的贡献荣获2020年诺贝尔化学奖。 CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 即将过去的5月份,有哪些重大的CRISPR/Cas研究或发现呢? 1.Nat Commun:利用CRISPR/Cas9介导的A2AR基因缺失可显著增强CAR-T细胞抵抗一系列癌症的疗效 doi:10.1038/s41467-021-23331-5 在CAR-T细胞疗法中,先收集患者自身的免疫细胞,并对它们进行基因改造,然后将它们输注回患者体内以对抗他们体内的癌症。世界各地的科学家们正在开发一种潜在的新方法,使得CAR-T细胞疗法对乳腺癌和其他实体癌更加有效。 腺苷(adenosine)是一种限制抗肿瘤免疫反应的免疫抑制因子,通过激活腺苷A2A受体(adenosine A2A receptor,A2AR)来抑制包括T细胞在内的多种免疫细胞亚群。在一项新的研究中,澳大利亚研究人员通过使用小鼠和人类CAR-T细胞,发现利用临床相关的CRISPR/Cas9策略靶向A2AR,可显著提高这些细胞的体内疗效,从而改善小鼠的生存。相关研究结果于2021年5月28日发表在Nature Communications期刊上,论文标题为“CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR Tcell efficacy”。 这些作者发现,在CAR刺激后,通过shRNA敲降A2AR可以促进小鼠CAR-T细胞的效应功能,并增强CAR-T细胞在体内的效应功能,但这也与持久性降低有关。相反,在小鼠和人类衍生的CAR-T细胞中,CRISPR/Cas9介导的A2AR缺失可以破坏腺苷的免疫抑制作用并增强效应功能,同时对CAR-T细胞的记忆表型或持久性没有有害影响。此外,由经过基因编辑的人类CAR-T细胞诱发的体内抗肿瘤功效的增强与肝脏毒性的酶学读数和组织切片分析所定义的毒性无关。 这些结果表明,与shRNA介导的A2AR敲降或与A2AR药物拮抗剂相结合相比,使用CRISPR/Cas9诱导A2AR的完全敲除是一种增强CAR-T细胞功能的卓越治疗方法。鉴于经过CRISPR/Cas9基因编辑的CAR-T细胞正在用于临床试验,这种方法很容易转化为临床应用。此外,通过CRISPR/Cas9介导的基因编辑靶向A2AR适用于CAR-T细胞治疗包括乳腺癌、卵巢癌、肺癌、急性髓系白血病、多发性骨髓瘤和非霍奇金淋巴瘤在内的多种肿瘤类型,在这些肿瘤类型中,人们已发现腺苷信号可抑制抗肿瘤免疫反应。 2.Science子刊:利用两种基因编辑策略精确校正DMD外显子缺失突变,可恢复97%的dystrophin蛋白产生 doi:10.1126/sciadv.abg4910 杜兴氏肌肉萎缩症(Duchenne muscular dystrophy,DMD,也译为杜兴氏肌肉营养不良症)是儿童中的一种最常见的致命性遗传疾病。DMD在男孩中的发病率为1/5000。它导致肌肉和心脏衰竭,并导致在30岁出头时过早死亡。当患者的肌肉退化时,他们被迫坐在轮椅上,而且当他们的横膈膜减弱时,他们最终依赖呼吸器进行呼吸。尽管科学家们几十年来已知抗肌萎缩蛋白(dystrophin)编码基因发生让这种蛋白不能表达的突变导致这种疾病,但是迄今为止还没有一种有效的治疗方法存在着。虽然科学家们已鉴定出导致DMD的数千种不同突变,但是这些突变往往集中在dystrophin基因的某些部分上。其中的一些突变导致肌肉细胞产生短小、功能较差的dystrophin蛋白版本。 在一项新的研究中,来自美国德克萨斯大学西南医学中心的研究人员成功地采用了一种新型的基因疗法来治疗DMD小鼠,独特地利用基于CRISPR-Cas9的工具来恢复在许多DMD患者中缺失的一大部分dystrophin蛋白。这种方法可能会开发用于治疗DMD的方法,并为其他遗传性疾病的治疗提供参考。相关研究结果近期发表在Science Advances期刊上,论文标题为“Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing”。 这些作者利用了这样一个事实,即dystrophin基因是由许多不同的称为外显子的片段组成的,其中的一些外显子是可有可无的。在大约8%的DMD男孩中,由于51号外显子中发生导致身体停止产生这种蛋白的缺失突变(?Ex51),近一半的dystrophin蛋白缺失了。他们开发出多种成功的CRISPR-Cas9核苷酸基因编辑策略,以跳过这种错误的“停止”信号,恢复了97%的dystrophin蛋白产生。一些策略通过移除相邻的外显子而发挥作用,而其他策略则利用微小的基因增减来使这种蛋白的产生回到正轨。这意味着他们的方法的力量在于不需要为每个携带新突变的DMD患者采取新的基因编辑策略,相反可以采用一种综合的方法校正多种不同的突变。 当这些作者在携带dystrophin突变的小鼠身上使用这种新方法时,在三周内,dystrophin蛋白的功能性版本在所有腿部肌肉纤维的一半以上中恢复了。此外,他们发现,他们可以使用从患有DMD的小鼠或人类体内分离出的细胞,在治疗前测试该方法是否会在某个特定患者中取得成功。分离的细胞在体外经诱导后产生诱导性多能干细胞(iPS细胞),随后让ips细胞分化为心肌细胞。 具体而言,他们将腺嘌呤碱基编辑器(ABE)的一个优化版本(即ABEmax)包装到腺相关病毒9(AAV9)载体中,并作为split-intein反式剪接系统,通过肌肉内注射将携带ABEmax的AAV9递送到?Ex51 DMD小鼠模型中,可恢复dystrophin蛋白表达。然后,他们验证了ABEmax通过靶向剪接供体位点(SDS)在DMD基因座上进行外显子跳读的功效,以及在人类ΔEx51 DMD ips细胞中进行外显子重构(exon reframing)的引导编辑(prime editing,即融合的逆转录酶通过扩展的向导RNA模板引入编辑)的功效。在培养皿中,他们可以观察这两种基因编辑方法是否有助于心肌细胞更好地发挥作用。他们指出利用来自DMD患者的ips细胞分化而来的心肌细胞,他们快速测试了他们的核苷酸基因编辑方法,并证实dystrophin蛋白成功恢复了。 3.Nature:在体内对PCSK9基因进行碱基编辑可将猴子体内的坏胆固醇降低约60% doi:10.1038/s41586-021-03534-y 基因编辑技术,包括CRISPR-Cas核酸酶和CRISPR碱基编辑器,有可能永久性地修改患者体内的致病基因。在非人灵长类动物的靶器官中展示持久性的编辑是在临床试验中对患者进行体内基因编辑之前的关键一步。 在一项新的研究中,来自美国Verve治疗公司和宾夕法尼亚大学佩雷尔曼医学院的研究人员开发出一种CRISPR基因编辑技术,该技术降低了试验猴子血液中的胆固醇水平。相关研究结果发表在2021年5月20日的Nature期刊上,论文标题为“In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates”。 该方法及使用一种碱基编辑技术,该技术由编码腺嘌呤碱基编辑的信使RNA(mRNA)和向导RNA(gRNA)组成,它们两者被封装在脂质纳米颗粒中,这样就可将脂质纳米颗粒一次性注射到食蟹猴的肝脏中。值得注意的是,这种碱基编辑技术能够将DNA中的一个核苷酸替换为另一个核苷酸,而不需要切断DNA双螺旋。之前的研究已表明,这种基因编辑技术更加精确,这意味着比其他CRISPR技术产生更少的错误。在这项新的研究中,这些作者利用CRISPR碱基编辑器将一个腺嘌呤转化为鸟嘌呤,将一个胸腺嘧啶替换为胞嘧啶,从而使PCSK9基因完全丧失了能力。 在单剂注射后,这些作者定期测试食蟹猴的胆固醇水平。他们发现,仅仅一周之后,PCSK9蛋白的水平下降了约90%,低密度脂蛋白胆固醇(LDL-C)水平下降了约60%。他们还发现,这两种下降幅度至少保持了高达10个月的时间。 4.Nat Biotechnol:在体内利用腺嘌呤碱基编辑器让PCSK9发生单点突变,大幅和持续地降低坏胆固醇水平 doi:10.1038/s41587-021-00933-4 碱基编辑是一种新型的基因编辑方法,它可以精确地改变DNA序列中的单个核苷酸。在一项新的研究中,来自瑞士、加拿大、美国和荷兰的研究人员利用碱基编辑在一个特定的基因中产生这样的一个点突变,成功地持续降低了小鼠和猕猴血液中较高的低密度脂蛋白胆固醇(LDL-C)水平。这为治愈遗传性代谢性肝病患者提供了可能。相关研究结果于2021年5月19日在线发表在Nature Biotechnology期刊上,论文标题为“In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels”。 在这项新的研究中,这些作者证实一种精确的基因编辑方法---腺嘌呤碱基编辑器(ABE)---能够大幅度地和持续地降低较高的LDL-C水平。他们利用ABE在一个编码PCSK9的基因中引入了一个单点突变。这种蛋白参与了LDL-C从血液到细胞的摄取。他们在小鼠和猕猴身上诱导的基因突变成功地阻断了PCSK9,这导致血液中的LDL-C浓度显著降低。这为患有家族性高胆固醇血症(一种遗传性的高胆固醇水平)的患者提供了一种潜在的疗法。 这些作者使用的基因编辑技术称为碱基编辑器。碱基编辑器可将DNA分子中的单个碱基转变为另一个碱基。比如,腺嘌呤碱基编辑器(ABE)将腺嘌呤(A)转换成鸟嘌呤(G)。碱基编辑器比以前的作为分子剪刀起作用的CRISPR-Cas核酸酶更精确地完成这一工作。为了控制这种碱基编辑工具递送到动物的肝脏中,他们采用了用于COVID-19 mRNA疫苗的RNA技术。然而,他们没有将编码SARS-CoV2刺突蛋白的RNA封装到脂质纳米颗粒中,而是将编码ABE的RNA封装到脂质纳米颗粒中。 这些作者将RNA-脂质纳米颗粒静脉注射到小鼠和猕猴体内,导致细胞对碱基编辑器工具的肝脏特异性摄取和短暂性产生。在小鼠中多达三分之二的PCSK9基因被编辑,而在非人类灵长类动物猕猴中多达三分之一的PCSK9基因被编辑,导致LDL-C水平大幅下降。此外,他们仔细评估了是否在不希望的位置发生了非特异性编辑,但没有发现这种脱靶事件的迹象。 5.Cell子刊:新研究利用CRISPR-Cas9成功地对人单核细胞进行基因编辑 doi:10.1016/j.celrep.2021.109105 自CRISPR-Cas9基因编辑技术问世以来的十年间,科学家们已经利用该技术剔除或改变了越来越多的细胞类型中的基因。如今,在一项新的研究中,来自美国格拉德斯通研究所和加州大学旧金山分校的研究人员将人类单核细胞---在免疫系统中发挥关键作用的白细胞---添加到了这一列表中。他们将CRISPR-Cas9应用于单核细胞,并展示了这种技术对了解人类免疫系统如何对抗病毒和细菌的潜在价值。这种技术为鉴定出对单核细胞功能最重要的人类基因以及针对一系列病原体提出新的治疗策略打开了大门,也为更多关于主要传染病和人类免疫细胞之间相互作用的研究奠定了基础。相关研究结果发表在2021年5月11日的Cell Reports期刊上,论文标题为“Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins”。 这些作者发现,用他们基于CRISPR的方法编辑的单核细胞仍然可以产生巨噬细胞和树突细胞。为了证实这些新编辑的细胞是否表现正常,他们用导致结核病的细菌感染了实验室里生长的细胞。他们发现,源自编辑过的单核细胞的巨噬细胞仍有能力吞噬这种病体。 这些作者接下来发现,使用CRISPR-Cas9去除单核细胞中的基因SAMHD1---因此也去除所产生的巨噬细胞--使得这些细胞被HIV感染的几率提高了50倍以上。虽然已知SAMHD1可以保护人类细胞免受HIV感染,但该实验证实了他们在单核细胞中的基因编辑方法的成功,以及它在研究疾病方面的前景。 6.Science:利用源自宿主细胞的非典型crRNA可实现Cas9的多重RNA检测 doi:10.1126/science.abe7106;doi:10.1126/science.abi9335 CRISPR-Cas免疫系统通过CRISPR RNA(crRNA)的引导降解外来遗传物质。crRNA作为间隔重复序列单元被编码在这种系统的CRISPR阵列中。每个crRNA通常由对CRISPR阵列进行转录而来的前体进行加工而成,然后与这种系统的Cas效应核酸酶(比如Cas9)合作,直接裂解靶核酸。在作为Cas9核酸酶和许多CRISPR技术的来源的II型系统中,crRNA加工和随后Cas9的DNA靶向需要反式激活crRNA(trans-activating crRNA,tracrRNA)。tracrRNA与转录的CRISPR阵列中每个crRNA的“重复序列”部分杂交。然后,宿主的RNase III裂解形成的RNA茎,产生加工后的crRNA:tracrRNA双链,以供Cas9使用。目前还不清楚的是crRNA是否局限于CRISPR-Cas位点,还是可以从基因组的其他地方获得。 在一项新的研究中,来自德国维尔茨堡大学等研究机构的研究人员发现crRNA可以来自CRISPR-Cas位点以外的宿主RNA,这促进他们开一种新的基于Cas9的诊断平台,允许在一次测试中可扩展地检测多种生物标志物。相关研究结果于2021年4月27日在线发表在Science期刊上,论文标题为“Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9”。 这些作者利用RIP-seq技术和MEME在线工具寻找揭示来自空肠弯曲菌(Campylobacter jejuni)的Cas9(CjeCas9)可以结合的细胞宿主RNA。他们发现两个显著的序列基序:基序#1和基序#2。基序#1与crRNA2引导部分的13个核苷酸互补。令人惊讶的是,基序#2与tracrRNA反重复结构域(anti-repeat domain)的21个核苷酸互补。由于作为crRNA生物发生的一部分,该结构域通常与crRNA重复序列杂交,基序#2提出了这些细胞RNA与tracrRNA杂交从而潜在地成为具有类似crRNA功能的RNA的有趣可能性。 这些富集的RNA片段的Cas9结合、预测的tracrRNA配对和长度分布表明,tracrRNA与内源性RNA配对,形成了非典型的crRNA(ncrRNA)。因此,预计ncrRNA可以将Cas9引导到两侧为前间区序列邻近基序(protospacer-adjacent motif,PAM)的互补DNA靶标上,类似于典型的crRNA。由于产生检测到的ncrRNA的所有基因都没有正确放置的PAM,因此预计ncrRNA不能引导Cas9裂解它们的起始基因组位点。 这些作者进一步证实,重编程的tracrRNA(reprogrammed tracrRNA,Rptr)可以将感兴趣的RNA的存在与Cas9的序列特异性DNA靶向联系起来。这种能力可以使Cas9在体内的应用(比如多重转录记录或转录依赖的编辑)成为可能。最直接的应用涉及通过LEOPARD(Leveraging Engineered tracrRNAs and On-target DNAs for PArallel RNA Detection,利用工程tracrRNA和在靶DNA进行平行RNA检测)在体外进行多重RNA检测。 目前的CRISPR诊断主要依靠Cas12a或Cas13寻找样品中的双链DNA或RNA靶标,在此过程中,靶标识别引起非特异性的单链DNA或RNA裂解荧光报告分子。非特异性荧光读取实际上将一次测试限制为针对一个靶序列。相反,重编程tracrRNA将识别到的RNA转化为ncrRNA,这将引导Cas9靶向匹配的DNA。Cas9结合或裂解匹配的DNA序列将表明样品中存在识别到的RNA。由于每个DNA靶标的序列都是独一无二的,大量的靶序列可以在一次测试中被平行监测。这些作者将由此产生的诊断平台称为LEOPARD。 7.Nat Commun:全基因组CRISPR筛选揭示乳腺癌的易感性和mTOR/Hippo协同潜在靶向治疗策略 doi:10.1038/s41467-021-23316-4 三阴性乳腺癌(TNBC)与侵袭性病理特征相关,包括组织学评分高、有丝分裂指数高、更高的转移率和复发率、缺乏靶向治疗手段以及患者的预后不良等。TNBC作为一种异质性疾病,尽管已将其进行分类,但由于疾病的异质性,TNBC的发病机制的了解仍有限,这也使得有效治疗策略的开发成为了一项艰巨的挑战。 使用基因组编辑系统(如CRISPR/Cas9技术)进行全基因组范围的遗传筛选已成为系统表征癌症易感性的先进工具。尽管最近的一些研究揭示了体内全基因组CRISPR筛查在非小细胞肺癌和白血病中的作用,但其有效性仍有待进一步的研究。 在该研究中,研究人员采用了无偏倚的体内全基因组CRISPR敲除筛选的方式,以在全基因组水平分析TNBC的癌症易感性,并确定致癌和抑癌通路之间的相互作用。 该研究揭示了TNBC患者中mTOR信号通路和Hippo信号通路是调节肿瘤功能的必不可少的组成成分。通过分析药物基质协同模型和患者来源移植瘤模型,研究人员进一步的建立了该治疗相关性,药理学抑制mTORC1/2和癌蛋白YAP能够有效的降低TNBC的肿瘤发生。 分子水平研究显示,虽然维替泊芬(verteporfin)诱导的对YAP抑制作用会导致细胞凋亡的发生,但torin1介导的对mTORC1/2抑制作用却能够促进巨胞饮(macropinocytosis)作用。Torin1诱导的巨胞饮作用能够进一步的促进维替泊芬的摄取,并显著增强其在癌细胞中的促凋亡作用。 查看详细>>

来源: 点击量:141

6 2021年5月HIV研究亮点进展 2021-06-01

人类免疫缺陷病毒(human immunodeficiency virus,HIV),即艾滋病(AIDS,获得性免疫缺陷综合征)病毒,是造成人类免疫系统缺陷的一种病毒。1983年,HIV在美国首次发现。它是一种感染人类免疫系统细胞的慢病毒(lentivirus),属逆转录病毒的一种。HIV通过破坏人体的T淋巴细胞,进而阻断细胞免疫和体液免疫过程,导致免疫系统瘫痪,从而致使各种疾病在人体内蔓延,最终导致艾滋病。由于HIV的变异极其迅速,难以生产特异性疫苗,至今无有效治疗方法,对人类健康造成极大威胁。 自上世纪八十年代以来,艾滋病的流行已经夺去超过3400万人的生命。据世界卫生组织(WHO)统计,据估计,2017年,全世界有3690万人感染上HIV,其中仅59%的HIV感染者接受抗逆转录病毒疗法(ART)治疗。目前为止HIV仍然是全球最大的公共卫生挑战之一,因此急需深入研究HIV的功能,以帮助研究人员开发出可以有效对抗这种疾病的新疗法。为阻止病毒大量复制对免疫系统造成损害,HIV感染者需要每天甚至终身服用ART。虽然服用ART已被证明能有效抑制艾滋病发作,但这类药物价格昂贵、耗时耗力且副作用严重。人们急需找到治愈HIV感染的方法。 即将过去的5月份,有哪些重大的HIV研究或发现呢? 1.Cell:发现一组抗聚糖抗体可有效地中和HIV病毒 doi:10.1016/j.cell.2021.04.042 天然抗体可以靶向病原体表面上的宿主聚糖。在一项新的研究中,来自美国杜克大学人类疫苗研究所的研究人员报告,一组新发现的与HIV病毒外壳上的聚糖结合的抗体能够有效地中和这种病毒,并指出一种新的疫苗方法也可潜在地用于对抗SARS-CoV-2和真菌病原体。相关研究结果于2021年5月20日在线发表在Cell期刊上,论文标题为“Fab-dimerized glycan-reactive antibodies are astructural category of natural antibodies”。 这些作者描述了在猴子和人类中发现的一类免疫细胞,它们产生一种独特的抗聚糖抗体(anti-glycan antibody)。这种新描述的抗体有能力附着在HIV外层的聚糖斑(a patch of glycans)上。这些聚糖斑是链状糖结构,类似于存在于宿主细胞表面上的聚糖。 这代表了一种新的宿主防御形式。这些新发现的抗体具有一种特殊的形状,可能对各种病原体有效。这些作者是在一系列探索是否存在靶向覆盖HIV外表面的聚糖的免疫反应中发现了这种抗体。 2.JEM:开发出一种新型小鼠模型可能是开发更好HIV疗法的关键 doi:10.1084/jem.20201908 普通小鼠不能感染HIV,而且以前的HIV小鼠模型使用了携带人类干细胞或CD4 T细胞的小鼠,其中人CD4 T细胞是一种可以感染HIV的免疫细胞。但这些模型往往效用有限,因为人类细胞很快就会将小鼠宿主的组织视为“外来的”,并进行攻击,使小鼠患上重病。 在一项新的研究中,美国研究人员开发出一种独特的临床前小鼠模型。为了避免小鼠组织遭受攻击,该模型携带的人类CD4 T细胞的一个亚群基本上排除了会攻击小鼠组织的细胞。他们发现这种小鼠模型可以有效地模拟长期HIV感染的动态,包括这种病毒对实验性疗法的反应。相关研究结果近期发表在Journal of Experimental Medicine期刊上,论文标题为“A participant-derived xenograft model of HIV enables long-term evaluation of autologous immunotherapies”。 这些作者预计这将成为研究HIV感染的基础科学和加快开发更好疗法的一个有价值的和广泛使用的工具。这种新小鼠模型是开发和测试针对HIV感染的细胞疗法的广泛努力的一部分。细胞疗法,如那些使用患者自己的工程化T细胞的疗法,在癌症治疗中越来越常见,并取得了一些显著的效果。许多研究人员希望类似的策略能够对HIV起作用,并且有可能是治愈性的。但由于缺乏良好的小鼠模型,阻碍了这种疗法的开发。 这些作者在这项研究中发现,先前在小鼠模型中发现的细胞攻击宿主问题主要是由于所谓的“幼稚(naïve)”CD4细胞造成的。这些是尚未接触到靶标的人CD4细胞,显然包括一个能够攻击多种小鼠蛋白质的细胞群体。当他们排除了幼稚CD4细胞,而只使用在血液中循环的人类“记忆”CD4细胞时,这些记忆CD4细胞在小鼠体内无限期地存活,而不会对它们的宿主造成重大损害。 3.Cell Host&Microbe:科学家开发出一种有望治愈HIV感染的新型混合制剂 doi:10.1016/j.chom.2021.04.014 据世界卫生组织数据显示,截止2019年底全球大约有3800万人感染了HIV。小型的CD4模拟化合物(CD4mc)能够促进抗体识别未配合病毒包膜(Env)上的表位来使得HIV-1感染的细胞对抗体依赖性的细胞毒性作用(ADCC,antibody-dependent cellular cytotoxicity)变得敏感,将CD4mc与两个CD4诱导(CD4i)抗体家族结合就能够使得Env稳定在对ADCC易感的构象上。 近日,一篇刊登在国际杂志Cell Host&Microbe上题为“Modulating HIV-1 envelope glycoprotein conformation to decrease the HIV-1 reservoir”的研究报告中,来自耶鲁大学医学院等机构的科学家们通过利用一种“分子开罐器”以及在感染个体机体血液中发现的抗体组合,成功减少了人源化小鼠机体HIV病毒库的规模和尺寸。本文研究结果能明显减缓动物模型在停止抗逆转录病毒疗法后病毒感染的复发。 人源化的小鼠是由没有自身免疫系统的免疫缺陷小鼠产生的,其机体中被移植了人类的免疫细胞,且能被用来研究影响人类机体免疫系统功能的疾病,比如癌症、白血病或HIV;文章中,研究人员开发了一种携带自然杀伤细胞(NK细胞)特殊的人源化小鼠模型,旨在研究其在HIV感染过程中发挥的作用。研究者Andres Finzi表示,通过将HIV感染者机体中天然存在的两种抗体与一种小型的“开罐器”分子进行结合,我们就能设法打开并稳定病毒包膜的易感形式;抗体能够识别病毒同时还能呼叫免疫NK细胞,从而就能摆脱受感染的细胞。 为了感染人类机体免疫系统的细胞,HIV会将其包膜与这些细胞表面的特定受体结合,包括一种名为CD4的分子,这种结合就会诱发病毒包膜形状的改变,这就是病毒进入宿主并感染宿主细胞的钥匙。2019年的一项研究结果表明,研究人员设计的一种小型CD4样分子或能扮演“开罐器”的角色,从而迫使病毒打开并暴露其包膜的易感部位。本文中,研究人员利用人源化小鼠进行研究结果发现,混合制剂不仅能限制病毒的复制,还能通过破坏被感染的细胞来降低HIV病毒库。 4.Cell子刊:新研究利用CRISPR-Cas9成功地对人单核细胞进行基因编辑 doi:10.1016/j.celrep.2021.109105 自CRISPR-Cas9基因编辑技术问世以来的十年间,科学家们已经利用该技术剔除或改变了越来越多的细胞类型中的基因。如今,在一项新的研究中,来自美国格拉德斯通研究所和加州大学旧金山分校的研究人员将人类单核细胞---在免疫系统中发挥关键作用的白细胞---添加到了这一列表中。他们将CRISPR-Cas9应用于单核细胞,并展示了这种技术对了解人类免疫系统如何对抗病毒和细菌的潜在价值。这种技术为鉴定出对单核细胞功能最重要的人类基因以及针对一系列病原体提出新的治疗策略打开了大门,也为更多关于主要传染病和人类免疫细胞之间相互作用的研究奠定了基础。相关研究结果发表在2021年5月11日的Cell Reports期刊上,论文标题为“Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins”。 单核细胞是免疫细胞,在保卫人体免受病原体侵害方面具有广泛的作用。作为其正常功能的一部分,单核细胞可以产生另外两种免疫细胞类型:巨噬细胞和树突细胞,前者吞噬并摧毁体内的外来物,后者帮助识别病原体并触发更具特异性的免疫反应。然而,单核细胞是出了名地难以在实验室中研究。很少有单核细胞在血液中循环,而且它们在培养皿中的行为与它们在体内的行为不同。因此,将CRISPR-Cas9应用于单核细胞需要调整标准实验过程。这些作者必须开发一种不仅要改变单核细胞内的基因还要确保这些被编辑的细胞仍有功能的方法。编辑单核细胞具有挑战性,但是他们认为在其他免疫细胞中复制他们在T细胞上取得的成功非常重要。 这些作者发现,用他们基于CRISPR的方法编辑的单核细胞仍然可以产生巨噬细胞和树突细胞。为了证实这些新编辑的细胞是否表现正常,他们用导致结核病的细菌感染了实验室里生长的细胞。他们发现,源自编辑过的单核细胞的巨噬细胞仍有能力吞噬这种病体。 这些作者接下来发现,使用CRISPR-Cas9去除单核细胞中的基因SAMHD1---因此也去除所产生的巨噬细胞--使得这些细胞被HIV感染的几率提高了50倍以上。虽然已知SAMHD1可以保护人类细胞免受HIV感染,但该实验证实了他们在单核细胞中的基因编辑方法的成功,以及它在研究疾病方面的前景。 5.JCI:精英控制者是如何控制体内HIV活性的?或许得益于髓样树突状细胞的帮助! doi:10.1172/JCI146136 精英控制者(ECs,elite controllers,在不使用药物的情况下机体免疫系统能控制HIV的一类罕见人群)机体中对HIV-1复制的抑制作用经常被认为归因于T细胞所介导的免疫反应,而先天性免疫细胞的具体贡献,目前研究人员并不清楚。提到免疫力,常常会让人想起适应性免疫反应,其由抗体和T细胞组成,当遭受感染或接种疫苗后机体能学会如何抵御特殊的病原体,但免疫系统也有先天性免疫反应,其会使用一套特殊的技术来对病原体做出迅速非特异性的反应,或者支持机体的适应性免疫反应。 然而在过去一些年里,科学家们发现,先天性免疫反应的某些部分在某些情况下也可以通过训练来应对传染性的病原体,比如HIV。近日,一篇发表在国际杂志Journal of Clinical Investigation上题为“Long noncoding RNA MIR4435-2HG enhances metabolic function of myeloid dendritic cells from HIV-1 elite controllers”的研究报告中,来自MIT等机构的科学家们通过研究发现,精英控制者机体中拥有的髓样树突状细胞(myeloid dendritic cells)或能作为先天性免疫反应的一部分,来展示出受过训练的先天性免疫细胞的特征。 研究者Yu说道,利用RNA测序技术,我们识别出了一种名为MIR4435-2HG的长链非编码RNA,其在精英控制者髓样树突状细胞中处于较高水平,而髓样树突状细胞则拥有增强的免疫和代谢状态;研究结果表明,MIR4435-2HG分子或许是这种增强状态的重要驱动子,这就提示了一种训练有素的机体免疫反应。 髓样树突状细胞的主要工作就是支持T细胞,其是精英控制者控制HIV感染能力的关键;由于MIR4435-2HG分子仅会在来自精英控制者细胞中处于较高水平,其可能是机体应对HIV感染的学习性免疫反应的一部分,携带MIR4435-2HG水平增加的髓样树突状细胞同样含有高水平的RPTOR蛋白,该蛋白会驱动细胞的代谢,这种代谢水平的增加则会允许髓样树突状细胞更好地支持T细胞来控制HIV的感染。 6.Nat Commun:免疫疗法与抗逆转录病毒疗法的组合性疗法或能扩展先天性细胞控制HIV的活性 doi:10.1038/s41467-021-23189-7 如果在没有抑制性抗逆转录病毒疗法治疗的情况下,HIV感染就会进展为AIDS,而与HIV感染不同的是,诸如非洲绿猴等天然宿主所发生的非致病性感染的主要特点则是缺少肠道微生物的易位以及强大的二级淋巴自然杀伤细胞反应,这会导致慢性炎症的缺失以及淋巴结B细胞滤泡中SIV的有限传播。 日前,一篇发表在国际杂志Nature Communications上题为“IL-21 and IFNαtherapy rescues terminally differentiated NK cells and limits SIV reservoir in ART-treated macaques”的研究报告中,来自耶基斯国家灵长动物研究中心等机构的科学家们通过研究确定了一种白介素-21(IL-21)和干扰素α(IFNα)的组合性免疫疗法,当加入到抗病毒疗法(ART)中时就能有效产生高功能性的自然杀伤细胞(NK细胞),从而帮助控制并减少动物模型机体中的猴免疫缺陷病毒(Simian Immunodeficiency Virus,SIV),这一研究发现对于开发更多的新型疗法来控制HIV/AIDS至关重要,目前HIV/AIDS在全球影响着3800万人的健康。 当前,抗逆转录病毒疗法是治疗HIV/AIDS的主要疗法,该疗法能将患者机体的病毒水平降低到检测不到的水平,但这并非是一种治愈的手段,而且会受到诸如成本、坚持药物疗法计划和社会因素等多种因素的影响。为了减少对抗逆转录病毒的依赖性,这篇研究报告中,研究人员对16只SIV阳性且利用ART疗法治疗的猕猴进行研究,在包括猕猴在内的大多数非人类灵长类动物(NHPs)机体中,未经治疗的SIV感染会发展成AIDS样疾病,并会产生功能受损的NK细胞;这与SIV感染的天然灵长类宿主动物就形成了鲜明的对比,SIV感染的天然灵长类宿主动物不会进展为AIDS样疾病;确定为何天然宿主不会进展或者如何阻断疾病的进展对于抑制人类机体中HIV的感染和进展至关重要。 文章中,研究人员将仅使用ART治疗的动物与接受ART、IL-21和IFNα治疗的动物进行比较来评估ART疗法加上组合性免疫疗法是否以及如何影响宿主动物组织中病毒的水平。文章第一作者Justin Harper博士表示,本文研究结果表明ART疗法外加组合性疗法治疗的猕猴能够展现出增强的抗病毒NK细胞反应;这些强大的NK细胞反应或能帮助清除淋巴结中的细胞,而众所周知,淋巴结中会藏匿病毒病促进病毒的复制从而使得病毒能够持续存活;而靶向作用病毒的庇护所并知晓如何限制其复制或能有效控制HIV的增殖。 7.Scientific Reports:2100万数据证实,HIV患者更有可能死于COVID-19 doi:10.1038/s41598-021-85359-3 近日,来自宾夕法尼亚州立大学医学院的研究人员评估了先前22项研究数据,其中包括北美,非洲,欧洲和亚洲的近2100万参与者,以确定HIV/AIDS与COVID-19两者之间的关系。 在所有参与者中,大多数为男性,中位年龄是56岁。在HIV阳性人群中,最常见的合并症是高血压,糖尿病,慢性阻塞性肺疾病和慢性肾脏病。96%感染HIV/AIDS的患者接受抗逆转录病毒疗法。 结果显示,与没有感染HIV的人相比,HIV患者感染COVID-19风险高出24%,死于COVID-19的风险高出78%。而替诺福韦和蛋白酶抑制剂在降低COVID-19感染和死亡的风险方面的有益作用尚无定论。 具体而言,接受替诺福韦/恩曲他滨治疗的患者诊断出COVID-19的风险最低(每10,000例为16.9),住院(每10,000例为10.5),ICU入院(每10,000人为0)和死亡(每10,000人为0)。但在调整后的多变量logistic回归模型中,研究人员发现,在COVID-19大流行之前使用更多替诺福韦与诊断出COVID-19的风险增加了近四倍。此外,法国的一项研究结果不支持替诺福韦对COVID-19的保护作用。 8.Radiology:HIV与冠状动脉粥样硬化:究竟是因果关系还是相互影响? doi:10.1148/radiol.2021203297 来自北美和欧洲的研究表明,与普通人群相比,HIV感染者(PLWH)的心肌梗塞风险比更高,从1.5到2.1不等。除了年龄以外,吸烟、血脂异常、高血压和糖尿病等传统心血管危险因素也可导致PLWH心血管疾病的发病率增加。多项研究已经讨论了抗逆转录病毒疗法对冠状动脉疾病的影响,其中炎症和免疫功能障碍等机制在心血管疾病的发生发展过程中起到了重要作用。冠状动脉CT血管造影是临床研究中表征、定量和监测HIV相关冠状动脉粥样硬化的一种非侵入性成像手段。与未感染艾滋病毒的健康志愿者相比,PLWH中冠状动脉非钙化斑块的发生率仍存在争议。 近日,发表在Radiology杂志的一项研究探讨了无已知心血管疾病的PLWH患者和无HIV的健康志愿者冠状动脉斑块的CT特征及斑块负荷,为临床对PLWH患者制定个性化治疗方案提供了有价值的参考依据。本项前瞻性研究从2012年到2019年期间,对无症状PLWH患者和无HIV、无已知心血管疾病的健康志愿者使用非对比CT(所有参与者,n=265)进行冠状动脉钙化(CAC)评分。在冠状动脉CT血管造影(n=233)中,测量了钙化斑块、混合斑块和非钙化斑块的患病率、频率和体积。使用Poisson回归校正心血管危险因素。 本研究共纳入PLWH患者181例(平均年龄56岁±7岁;167名男性)和健康志愿者84例(平均年龄57岁±8岁;65名男性)。对155名PLWH和78名健康志愿者进行了CT血管造影检查。调整心血管风险后,PLWH和健康志愿者之间的10年Framingham中位风险评分(10%vs 9%;P=.45)、CAC评分(优势比[OR],1.06;95%CI:0.58、1.94;P=.85)和总斑块发病率(发病率比率,1.07;95%CI:0.86,1.32;P=.55)没有统计学差异。在PLWH中,非钙化斑块发病率较高(发病率比率,2.5;95%CI:1.07、5.67;P=.03),体积较大(OR,2.8;95%CI:1.05、7.40;P=.04)。PLWH患者钙化斑块频率较低(OR,0.6;95%CI:0.40,0.91;P=.02)。使用蛋白酶抑制剂治疗与更高的总体积(OR,1.8;95%CI:1.09,2.85;P=.02)及混合斑块(OR,1.6;95%CI:1.04、2.45;P=03)相关。 综上所述,本研究发现,无症状、无已知心血管疾病的艾滋病毒感染者(PLWH)的非钙化冠状动脉斑块的发病率和体积比健康的无艾滋病毒志愿者高2-3倍,而钙化斑块的发病率降低了40%。本研究结果表明,非钙化斑块作为一种解剖底物参与了PLWH患者心血管疾病的高风险进展,因此本研究倡导在进一步的HIV相关动脉粥样硬化的临床、预后和机制研究中,CT应被视为一项重要的非侵入性成像选择。 9.PLoS Pathogens:发现母婴传播艾滋病毒的新线索 doi:10.1371/journal.ppat.1009478 近日,美国纽约Weill Cornell医学儿童中心团队发现,艾滋病毒的母婴传播与母亲血液中能够逃避广义中和抗体(bnAbs)的罕见病毒变体有关,bnAbs是一种可用于阻止多种艾滋病毒菌株的新兴疗法,该研究结果发表在PLoS Pathogens上。 在该项研究中,研究人员分离出了从母亲传染给婴儿的HIV变体,通过单基因组扩增法扩增了HIV-1包膜基因(env),来自非传播性母亲的HIV env变体对自体血浆的敏感性与传播性母亲的非传播性变体相似。相比之下,婴儿变体对配对血浆中和的敏感性比来自传播母亲和非传播母亲的非传播母亲变体平均低30%(P=0.015)。特征序列分析显示,富集在传播母亲的env序列中的主题与广义中和抗体(bnAb)抗性有关。 研究结果表明,在临近分娩时,循环中的母体病毒对bnAb介导的中和有抵抗力,但对自体血浆中和没有抵抗力,这预示着母婴传播风险增加。 查看详细>>

来源: 点击量:129

7 2021年4月HIV研究亮点进展 2021-05-04

人类免疫缺陷病毒(human immunodeficiency virus,HIV),即艾滋病(AIDS,获得性免疫缺陷综合征)病毒,是造成人类免疫系统缺陷的一种病毒。1983年,HIV在美国首次发现。它是一种感染人类免疫系统细胞的慢病毒(lentivirus),属逆转录病毒的一种。HIV通过破坏人体的T淋巴细胞,进而阻断细胞免疫和体液免疫过程,导致免疫系统瘫痪,从而致使各种疾病在人体内蔓延,最终导致艾滋病。由于HIV的变异极其迅速,难以生产特异性疫苗,至今无有效治疗方法,对人类健康造成极大威胁。 自上世纪八十年代以来,艾滋病的流行已经夺去超过3400万人的生命。据世界卫生组织(WHO)统计,据估计,2017年,全世界有3690万人感染上HIV,其中仅59%的HIV感染者接受抗逆转录病毒疗法(ART)治疗。目前为止HIV仍然是全球最大的公共卫生挑战之一,因此急需深入研究HIV的功能,以帮助研究人员开发出可以有效对抗这种疾病的新疗法。为阻止病毒大量复制对免疫系统造成损害,HIV感染者需要每天甚至终身服用ART。虽然服用ART已被证明能有效抑制艾滋病发作,但这类药物价格昂贵、耗时耗力且副作用严重。人们急需找到治愈HIV感染的方法。 即将过去的4月份,有哪些重大的HIV研究或发现呢? 1.Cell子刊:利用高度多重的ddPCR方法更好地检测患者体内的HIV病毒库 doi:10.1016/j.xcrm.2021.100243 在一项新的研究中,美国研究人员使用两种针对HIV基因组的3个区域(三重)的ddPCR测定方法(下称测定方法1和测定方法2)来开发一种5区域测试方法(这两种三重ddPCR测定各自针对两个独特的HIV基因组区域,但共同针对1个重叠区域,从而允许批间质量控制)。通过结合这两种平行的三重ddPCR测定方法,这些作者有信心对真正完整的HIV-1病毒基因组进行定量确定。作为进一步的改进,他们优化了其中的一种特异性定量确定T细胞的多重ddPCR测定方法,以便准确地将定量确定的数量与待研究的HIV靶细胞的数量进行正常化。这个额外的步骤对于组织活检特别有用,因为与血液相比,组织中的细胞群体难以分离和纯化。相关研究结果发表在2021年4月20日的Cell Reports Medicine期刊上,论文标题为“A highly multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir”。 具体而言,测定方法1的三个HIV靶点位于HIV pol基因的3'端、tat基因和env基因,而测定方法2的三个HIV靶点位于长末端重复序列(LTR)/gag区域、pol基因的5'端和env。每种测定方法中,针对每个HIV靶点设计特异性的引物和探针。在每种测定方法的三个HIV靶点中,有两个使用相同的染料进行探针检测,但浓度不同,以便能够在荧光振幅的X/Y图上区分不同的HIV靶点。这使得这些作者能够对含有不同靶点组合的液滴进行定量确定。针对env的引物和探针在测定方法1和测定方法2中是相同的,在201个临床样本中,这两种测定方法的env性能几乎相同。此外,在这些临床样本中,五对引物/探针检测靶点的失败率极低:gag 0.5%;3'pol 1%;env 3.1%(两种测定方法均如此);tat 3.6%;5'pol 6.3%。 2.Nat Commun:重大进展!发现两种主要的HIV靶细胞 doi:10.1038/s41467-021-22375-x 组织单核吞噬细胞(MNP)专门从事病原体检测和抗原呈递。所有已知的组织MNP可分为表皮CD11c+树突细胞(DC)、朗格汉斯细胞(LC)、真皮cDC1(经典1型树突细胞)、cDC2(经典2型树突细胞)、CD14+自发荧光巨噬细胞和真皮非自发荧光CD14+细胞。组织MNP将HIV传递给它的主要靶细胞;CD4 T细胞。大多数MNP HIV传播研究都集中在上皮MNP上。然而,鉴于人们如今已知粘膜创伤和炎症与HIV传播密切相关,澳大利亚研究人员在一项新的研究中,探究了存在于所有人类肛门-生殖器组织和结肠组织的上皮下(固有层和真皮)中的不同MNP亚群的作用。相关研究结果近期发表在Nature Communications期刊上,论文标题为“Human anogenital monocyte-derived dendritic cells and langerin+cDC2 are major HIV target cells”。 这些作者利用流式细胞仪确定了每种真皮MNP亚群在人类肛门-生殖器组织和结肠组织(HIV传播发生的实际部位)中的相对比例,并同时利用腹部皮肤作为对照进行比较。他们还开发出一种方法来区分非自发荧光的CD14+CD1c−单核细胞源性巨噬细胞(monocyte-derived macrophage,MDM)和CD14+CD1c+单核细胞源性树突细胞(monocyte-derived dendritic cell,MDDC)。 这些作者发现HIV能够穿过上皮表面,与肛门-生殖器外植体上皮下的MNP相互作用,并确定了HIV在性传播过程中可能遇到的人类肛门-生殖器组织和结肠组织中存在的全部MNP亚群。在此过程中,他们确定了两个更高效摄取HIV、被HIV感染并将这种病毒传播给CD4 T细胞的MNP亚群:CD14+CD1c+MDDC和langerin+cDC2。 3.PLoS Pathog:抗碳水化合物抗体2G12交叉中和HIV-1和H3N2病毒,有望作为对抗有包膜RNA病毒的通用抗体 doi:10.1371/journal.ppat.1009407 在一项新的研究中,来自美国、英国和中国台湾的研究人员证实2G12在过去三十年中具有中和人类季节性H3N2病毒的能力,并通过对病毒天然HA蛋白和重组HA蛋白上的N-连接聚糖的结构生物学分析、质谱分析和进化分析来研究中和机制。在HA受体结合位点(RBS)附近的一个保守性的高甘露糖N-连接糖基化位点和一个新获得的高甘露糖N-连接糖基化位点都有助于2G12对流感病毒的这种广泛中和活性。相关研究结果近期发表在PLoS Pathogens期刊上,论文标题为“A cross-neutralizing antibody between HIV-1 and influenza virus”。 添加、去除或替换聚糖屏障的N-糖基化位点是RNA病毒逃避抗体识别的常用策略之一。在这项新的研究中,这些作者证明了2G12尽管作为抗HIV抗体被发现,但也具有广泛中和过去50年发生进化的人H3N2流感病毒的能力。通过全面的和基于进化轨迹的位点特异性糖蛋白组学、突变和负染色电子显微镜(nsEM)成像,他们发现2G12中和H3N2流感病毒是通过与存在于N-糖基化位点N165和N246上的两个高甘露糖聚糖结合实现的,其中这两个位点位于HA受体结合位点的近端。由此看来,2G12很可能代表了一种针对人类流感病毒的中和抗体,它只识别HA表面上的聚糖表位。1980年前后N246的出现使得H3N2流感病毒在N246和N165处赋予了可以被2G12识别的寡甘露糖聚糖簇。那么,这些位点的逃逸突变体很可能具有较高的适应成本,这是因为,保守性N165的破坏会降低病毒的适应能力,而N246位点的破坏在近期的病毒中无法得到拯救。 这些作者揭示了2G12可以中和人类H3N2病毒,这是因为自从1968年大流行以来的H3N2进化过程中,大约30-35年前出现了N246糖基化位点。由于2G12也与HIV-1 Env上的高甘露糖表位结合,这就提出了这样的碳水化合物是否可以作为有包膜RNA病毒表面上的通用表位的问题。迄今为止,大多数针对表位有碳水化合物的病毒的抗体都是在HIV-1慢性感染的患者中发现的。虽然在HIV-1未感染的人类受试者中发现了2G12样Fab二聚化聚糖抗体和前体分子,但进一步的疫苗接种研究将阐明如何诱发2G12样抗碳水化合物抗体来对抗高糖基化的病毒。 4.Cell Rep:新型免疫策略有助于诱导HIV-1膜蛋白三聚体广谱性中和抗体的产生 doi:10.1016/j.celrep.2021.108937 长期以来,可溶性“SOSIP”稳定化的包膜(Env)三聚体被认为是有前途的HIV疫苗免疫原。但是,它们会诱导针对无糖化的三聚体基底部结构域的高滴度反应,而在天然病毒中该表位往往是被“掩盖”的。为了描述针对融合肽(Fusion Peptide,FP)位点的免疫原引发的靶向基地结构域的免疫反应,来自美国NIH的John R.Mascola团队定量研究了各种SOSIP稳定化的Env三聚体和FP载体免疫策略在诱导非人类灵长类动物产生针对Env三聚体基底结构域抗体的特征。 研究结果显示:靶向三聚体基底结构域的抗体反应在仅使用三聚体膜蛋白免疫的动物中约占90%,在用SOSIP三聚体和FP结合物联合免疫的动物中约70%,在FP初免-三聚体增强的策略免疫的动物中中约30%。值得注意的是,FP引发的动物的广谱中和抗体的产生水平与靶向三聚体基底结构域的抗体产生水平呈负相关。这些结果提供了量化分析抗体反应发生率的方法,并揭示了FP接种可以减少三聚体碱基反应并改善中和结果。 首先,作者选择了49只灵长类动物(NHP)进行研究,它们被分为8组,分别接受了3种不同类型的免疫原接种:1)三聚体,2)三聚体-FP,3)FP初免(prime)+三聚体增强(boost)。第一组三包括总共23只动物,它们在第0周和第4周接受三聚体免疫,并在第6周采集血浆样品进行分析。第一组的免疫原包括BG505 DS-SOSIP或CH505 DS-SOSIP脱聚糖变体,其中a).在融合肽周围去除了三个聚糖(N230,N241和N611);b).四个聚糖(N88,N230,N241和N611)在融合肽附近去除;或者c).在CD4结合位点(CD4bs)附近去除了三个聚糖(N197,N276和N462)(天然CH505三聚体在CD4bs附近的N362缺失了聚糖)。CH505 DS-SOSIP免疫原进一步被构建为嵌合体,其中gp120的N和C末端以及整个gp41亚基的部分被BG505的序列取代。结果显示,CH505和BG505免疫原接种后产生的针对基底结构域的抗体反应是相同。值得注意的是,此前研究仅对三聚体中的FP特异性反应的分析,但尚未发现针对基底结构域的特异性反应。 进一步,作者检测了针对Env三聚体基底结构域的特异性血浆抗体反应。研究结果显示,针对基底结构域的Fab能够阻断单克隆抗体或血浆抗体对基底结构域的识别,但不会影响广谱性中和型抗体(bNAb)对三聚体主要侵染位点的识别。之后,作者发现在给受试动物接种FP(仅接种FP或与DS-SOSIP联合),均能够显著降低针对基底结构域的抗体的产生水平。此外,针对基底结构域的抗体反应程度以及广谱中和抗体的产生水平之间存在明显的负相关性。 5.PLoS Pathog:开发出第二代CD4CAR-T细胞,可以更有效更持久地对抗HIV感染 doi:10.1371/journal.ppat.1009404 在之前的研究和临床试验中,第一代CD4CAR(基于全长CD4构建出的CAR)的一种不好的特性是CD4受体本身能够介导HIV感染。CD4分子含有4个细胞外结构域,依次命名为D1、D2、D3和D4。D1结构域离跨膜结构域最远,含有HIV包膜结合区。HLA II类结合位点主要在D1和D2结构域发现。D4结构域介导IL-16结合和CD4-CD4二聚化。IL-16是一种免疫调节性的细胞因子,主要在炎症位点作为CD4细胞的趋化因子发挥作用。在第一代CD4CAR中,IL-16在D4结构域上的结合可导致基于IL-16的潜在非特异性的CD4CAR信号转导。CD4受体的D3结构域也在TCR:CD4复合物形成和TCR刺激中发挥重要作用。为此,需要开发一种不与IL-16发生交叉反应的降低与HLA II和内源性TCR之间相互作用的CAR,从而潜在地增加CAR的安全性。 为了克服这些问题,来自美国加州大学洛杉矶分校的研究人员在一项新的研究中,利用基于造血干细胞(HSC)的方法开发并测试了第二代基于CD4的CAR(下称D1D2CAR)抵抗HIV感染。在第二代CD4CAR中,他们剔除了CD4的D3和D4结构域,仅留下允许HIV包膜识别的D1和D2结构域,从而制造出截断的CD4CAR分子,即D1D2CAR。相关研究结果于2021年4月2日发表在PLoS Pathogens期刊上,论文标题为“Robust CAR-T memory formation and function via hematopoietic stem cell delivery”。 在体外实验中,这些作者发现表达第一代CD4CAR导致HIV成功地感染宿主细胞,相反之下,表达D1D2CAR并不允许宿主细胞被HIV感染。这表明尽管能够结合HIV包膜,但是D1D2CAR并不允许病毒入侵宿主细胞。更重要的是,表达第一代CD4CAR的T细胞(下称CD4CAR-T)和表达D1D2CAR的T细胞(下称D1D2CAR-T)对HIV感染细胞表现出相当的细胞杀伤活性。这表明D1D2CAR在功能上能够诱导与第一代CD4CAR类似的抗病毒反应。 为了研究由造血干细胞分化产生的D1D2CAR-T细胞是否能够在体内抑制HIV复制,这些作者让植入未经修饰的造血干细胞(作为对照)或经修饰后表达第一代CD4CAR或D1D2CAR的造血干细胞的人源化BLT小鼠被HIV感染10周。在HIV感染后每两周检测血浆病毒载量。相比于对照小鼠,植入表达第一代CD4CAR或D1D2CAR的造血干细胞的小鼠在10周内表现出较低水平的病毒载量。然而,由造血干细胞分化产生的CD4CAR-T细胞通过IL-16介导的CD4-CD4二聚化对Env+靶细胞(即表达HIV抗原Env的靶细胞)和IL-16刺激作出反应,相比之下,由造血干细胞分化产生的D1D2CAR-T细胞仅对ENV+靶细胞作出反应,而不对可溶性IL-16作出反应。 之前的研究表明给CAR添加共刺激结构域可能会促进CAR阳性细胞更快速产生初级反应,但是这种添加对造血干细胞定植和胸腺淋巴细胞产生的影响是未知的。为此,这些作者构建出含有4-1BB或CD28共刺激结构域的第一代CD4CAR和D1D2CAR,然后将表达第一代CD4CAR、D1D2CAR、第一代CD4CAR-41BB、D1D2CAR-41BB、第一代CD4CAR-CD28或D1D2CAR-CD28的造血干细胞移植到人源化BLT小鼠的骨髓中,发现4-1BB共刺激结构域而不是CD28共刺激结构域允许成功的造血分化,并改善由造血干细胞分化而来的CAR-T细胞的抗病毒功能。加入4-1BB可导致更快速的病毒血症抑制。D1D2CAR 4-1BB和cART联合使用可导致这些小鼠更快实现病毒抑制,而且在ART治疗期间,CAR-T细胞更持久地存在。 6.EMBO Mol Med:重磅!科学家开发出能有效阻断HIV再度激活的纳米酶! doi:10.15252/emmm.202013314 在机体感染期间,活性氧(ROS,Reactive oxygen species)能调节人类免疫缺陷病毒1型(HIV-1)的复制,然而,由于操纵细胞中抗氧化系统所产生的有害结果,将这一研究观点应用于开发新型HIV治疗策略目前仍然处于滞后阶段。日前,一篇刊登在国际杂志EMBO Molecular Medicine上题为“Antioxidant nanozyme counteracts HIV‐1 by modulating intracellular redox potential”的研究报告中,来自印度科学院等机构的科学家们通过研究就成功开发了一种新型人工酶类,其能成功阻断宿主免疫细胞中HIV-1的再度激活和复制。 研究者表示,这种由五氧化二钒纳米片(vanadium pentoxide nanosheets)制成的新型纳米酶(nanozymes)能够模拟天然酶类谷胱甘肽过氧化物酶(glutathione peroxidase)的功能,帮助减少宿主细胞中氧化性压力的水平,而宿主细胞中氧化性压力能够有效控制病毒的增殖。这种新型纳米酶的优势在于其在生物系统中较为稳定,并不会在细胞中介导任何不必要的反应,而且研究人员在实验室中制备这种纳米酶也相对容易一些。 早在几年前,研究人员Amit Singh等人就开发了一种生物传感器来实时测定HIV感染的免疫细胞中氧化性压力的水平,他表示,我们发现,要想走出潜伏期并再度被激活,HIV仅需要少量的氧化性压力;而阻止其再度激活的一种策略就是将细胞中氧化性压力保持在较低水平下,这就会将病毒锁定在一种永久的潜伏状态;而诸如谷胱甘肽过氧化物酶等酶类就是该过程非常必要的酶类,其能将毒性的过氧化氢转化为水和氧气,然而,诱导宿主细胞产生过量的这些酶类就能破坏紧密调节的细胞氧化还原机器。 几乎在同一时间,研究者Mugesh领导的研究团队发表研究证实了,由五氧化二钒所制成的特殊纳米线(nanowires)结构或能有效模拟谷胱甘肽过氧化物酶的活性,因此,研究者Singh决定与Mugesh开展联合研究。他们在实验室中制备了超薄的五氧化二钒纳米片结构,并利用这些纳米片来处理HIV所感染的细胞,结果发现,纳米片结构能像天然酶类一样有效减少过氧化氢的水平并阻断病毒的再度激活。 研究者Shalini Singh解释道,这些纳米片结构或能产生某些直接的作用效应,即对病毒再度激活的宿主基因的表达水平发生了减少。当研究人员利用这种纳米酶(纳米片结构)来处理接受抗逆转录病毒疗法(ART)的HIV感染者机体中的免疫细胞,当疗法停止时,病毒的潜伏期会被诱导地更快且病毒随后的再度激活会被抑制,这就表明,这两种手段结合起来能够更加有效地发挥抵御HIV的作用效果。 7.PNAS:新研究揭示出5种HIV潜伏促进剂,为功能性治愈HIV奠定基础 doi:10.1073/pnas.2012191118 在感染人体后,人类免疫缺陷病毒(HIV,俗称艾滋病病毒)会进入一种长时间的不活跃的潜伏状态,在免疫细胞中形成一种潜伏的病毒库。这种潜伏状态可能会持续到基因表达的随机波动(或者说噪音),或者活化细胞因子或抗原的存在会触发这种病毒的重新激活。感染者需要终身服用抗逆转录病毒药物(ART)来控制这种病毒。在治疗停止后,潜伏感染的T细胞中的HIV自发重新激活仍然是治愈HIV的主要障碍。重新激活和清除这种潜伏病毒库的疗法仅部分有效,而用于抑制重新激活和稳定化这种潜伏状态的潜伏促进剂(latency-promoting agent,LPA)仍未得到充分研究,它们的作用机制也缺乏多样性。 在一项新的研究中,来自美国伊利诺伊大学香槟分校的研究人员扩展了以前报道的基于流式细胞仪的HIV LTR启动子药物筛选,并利用自动时间推移荧光显微镜,能够测量最小HIV正向自调节基因回路上的噪声幅度(CV2)和噪声自律半衰期(τ1/2)。他们筛选了能够调控CV2和τ1/2的化合物。接下来,调节噪声的化合物在潜伏感染的全长HIV构建体上用流式细胞仪进行测试,以衡量它们在促进HIV潜伏的潜力。相关研究结果近期发表在PNAS期刊上,论文标题为“Screening for gene expression fluctuations reveals latency-promoting agents of HIV”。 他们发现了三种LPA,其中的两种已被证明与抑制硫氧还蛋白/硫氧还蛋白还原酶(Trx/TrxR)氧化还原途径有关。然后,他们测试了多种抑制Trx/TrxR途径的化合物,并发现了另外两种LPA候选物。他们总共提出了五种抑制HIV的化合物,从而扩大了供研究界使用的LPA数量。在发现的五种LPA中,有一种获得美国食品药品管理局(FDA)批准,并且可以在市场上买到。 由此可见,这项研究总共发现了5种LPA,即NSC 400938、NSC 401005、NSC 155703和两种属于Trx/TrxR抑制剂的药物,即PX12和tiopronin,以扩大目前的LPA分子库。值得注意的是,NSC 401005显示出与Trx/TrxR抑制剂的结构相似性,NSC 400938显示出与Trx/TrxR抑制剂的功能相似性。NSC 155703已被证明能抑制IL1β的分泌,其中IL1β是一种促炎因子,它的产生已被证明因HIV感染而增强。Trx/TrxR家族中的一些抑制剂,包括tiopronin和auranofin,已获FDA批准并可在市场上买到。它们已被广泛应用,从皮肤护理到抗癌治疗,从而使得对它们进行深入的研究具有吸引力。TrxR抑制剂化合物已被充分研究,而且氧化还原失衡与HIV疾病的进展直接相关。 8.Nature Immunology:以线粒体为靶点击败HIV-1 doi:10.1038/s41590-021-00898-1 CD4+T细胞的HIV-1感染触发线粒体蛋白NLRX1和FASTKD5的相互作用以促进氧化磷酸化,导致病毒复制增加。现在已经表明,该过程可以被二甲双胍阻断。基于此,Haitao Guo等人在《Nature Immunology》杂志发表了题为“Multi-omics analyses reveal that HIV-1 alters CD4+T cell immunometabolism to fuel virus replication”的论文,阐明了导致OXPHOS增加的一种机制,并证明该途径与峰值病毒血症和更差的疾病结果正相关。此外,他们已经证明OXPHOS的这些增加可以在人类细胞和人源化小鼠中用广泛可用的药物二甲双胍抑制,减少人源化小鼠模型中的病毒血症和T细胞耗竭,这表明二甲双胍是HIV-1感染的可能疗法。 这项研究揭示了涉及NLRX1和FASTKD5的分子基础,可增加OXPHOS对HIV-1感染的反应。这会促进病毒血症,并与疾病预后不良有关。OXPHOS如何引发这种效应需要进一步分析,HIV-1促进NLRX1的确切机制也是如此。FDA批准的,廉价,安全且广泛可用的2型糖尿病药物二甲双胍可通过抑制OXPHOS降低病毒血症和病毒载量。这些发现表明,使用二甲双胍或其他线粒体抑制剂靶向OXPHOS可能有助于治疗HIV-1感染,并结合抗逆转录病毒疗法。靶向该途径不仅降低了峰值病毒血症和病毒设定点,而且还消除了T细胞耗竭,这是HIV-1感染的关键并发症,因为它导致艾滋病的进展。鉴于二甲双胍在人群中的广泛使用,回顾性检查接受二甲双胍的个体是否减少了病毒血症并减缓了疾病进展可能是有趣的。目前的研究进一步强调了免疫细胞代谢变化作为疾病驱动因素的重要性,在这种情况下是艾滋病,并预示着创新的治疗方法。 9.Cell子刊:科学家剖析HIV-1 DNA的调控机制 doi:10.1016/j.chom.2021.03.001 来自剑桥大学治疗免疫学和传染病研究所的Paul JLehner教授带领团队,在Cell子刊《Cell Host&Microbe》杂志上发表了题为“The SMC5/6 complex compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr”的研究论文。 研究人员用病毒粒子包装的Vpr或VLP递送的Vpr观察到来自未整合的HIV-1 DNA的增强的基因表达,并且发生在原代人CD4+T细胞以及细胞系中。raltegravir非依赖性,Vpr介导的病毒基因表达增加也可能是由于未整合基因组的去阻遏,因为这种表型在稳定整合的病毒中未见。在自然感染的情况下,丰富的未整合的病毒DNA种类因此不仅仅是“死胡同”产品。它们提供了病毒基因表达的额外来源,其通过Vpr增强。在感染后的早期时间点,来自未整合病毒的基因表达因此可以促进整合的病毒基因组的成功并且形成生产性感染的基础,特别是如果病毒整合到未被很好转录的位点中。 该研究团队的研究首次描述了特异性靶向未整合的HIV-1基因组的沉默途径。Goff实验室最近将未整合的MLV逆转录病毒基因组的沉默与HUSH复合物的NP220依赖性募集联系起来,该研究团队之前显示的表观遗传沉默复合物可以抑制整合的慢病毒表达。然而,根据Goff实验室的观察,该研究团队没有发现HUSH复合物在沉默未整合的HIV-1中的作用。取而代之的是,该研究团队的筛选确定了SLF2和SMC5/6复合体在沉默未整合的慢病毒基因组(HUSH和NP220均独立)中的关键作用。 10.PNAS:CD4受体多样性展现灵长类物种抵抗免疫缺陷病毒的保护机制 doi:10.1073/pnas.2025914118 人和猿猴免疫缺陷病毒(HIV/SIV)对宿主的感染依赖于病毒包膜糖蛋白(Env)与免疫细胞表面的宿主蛋白CD4结合。尽管在人类中该结构域相对稳定,但黑猩猩CD4的Env结合域则存在高度多态性:在野生种群中有9个不同的变体。在最近发表在《PNAS》杂志上的一项研究中,来自宾夕法尼亚大学的Beatrice H.Hahn团队发现:CD4多样性并非黑猩猩独有,许多其它非洲灵长类物种中也存在上述CD4受体多样性。 在这项研究中,作者对超过500只猿类的CD4蛋白最外层(D1)结构域进行了表征。结果显示,29个灵长类物种中有24个存在多态性残基,其中一个物种中鉴定出多达11种不同的变体。感染实验结果显示:D1结构域氨基酸置换会影响SIV膜蛋白Env介导的侵染过程。此外,作者在不同属的灵长类动物中发现了几种相同的CD4多态性,包括添加了N-连接的糖基化位点,为物种的平行进化提供了新的佐证。这些数据表明,灵长类动物CD4蛋白的HIV/SIV Env结合区在物种内部和物种之间都高度可变,并表明这种多样性通过平衡选择已经维持了几百万年,而且至少部分原因是为了保护宿主免受灵长类慢病毒的侵染。此外,尽管长期感染SIV的物种已发展出避免疾病进展的特定机制,但灵长类慢病毒具有内在致病性,并已在宿主基因组上留下了印记。 首先,作者比较了野生黑猩猩以及人类的CD4 alpha链序列差异。结果显示,人与黑猩猩的CD4蛋白2号外显子序列完全一致,部分黑猩猩个体3号外显子83号位点存在一个氨基酸突变(I83T)。感染实验结果表明,相比人类CD4受体,两种不同变体(I83,T83)的黑猩猩CD4蛋白受一系列SIV感染的效率均明显较低。进一步,作者比较了大猩猩与人类CD4蛋白的序列差异,发现其中18,27,31,34号位点的氨基酸存在变异,其受一系列SIV感染的效率均不同程度地低于人源CD4受体。 除此之外,作者在不同类型的非洲猿类中均发现了CD4 alpha链的物种内与物种间序列多样性。这些数据表明,灵长类CD4受体处于长期平衡选择之下,并且这种多样化是灵长类慢病毒与其宿主之间共同进化“军备竞赛”的结果。 查看详细>>

来源: 点击量:185

8 2021年4月CRISPR/Cas最新研究进展 2021-05-04

基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。2020年10月,德国马克斯-普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A.Doudna博士因在CRISPR-Cas9基因编辑方面做了的贡献荣获2020年诺贝尔化学奖。 CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 即将过去的4月份,有哪些重大的CRISPR/Cas研究或发现呢? 1.Nature:揭示体细胞基因组编辑的发展机遇和挑战 doi:10.1038/s41586-021-03191-1 遗传因素导致了大多数类型的人类疾病,包括遗传性疾病、传染性疾病和恶性疾病。因此,生物医学科学的一个长期目标是开发一种手段来修改患者体内的基因组,以校正致病突变,使入侵病原体的基因组失效,使免疫细胞攻击肿瘤,并使无数其他治疗机会得以实现。在某些情况下,基因添加可以具有治疗价值,而且基因疗法正在经历越来越多的成功。然而,在许多其他情况下,必须对患者的基因组进行编辑才能达到治疗效果。基因组编辑广泛地包括不同的技术,可以在不同的环境下做出许多不同的基因组改变,这个话题已经成为近期的全面综述的主题。基因组编辑中的几个概念是SCGE联盟(Somatic Cell Gene Editing Consortium,体细胞基因编辑联盟)的目标和战略的核心。 在过去的几十年里,技术的稳步发展使得用户可编程的基因组编辑已被引入,测试,改进和实施。这些技术包括同源重组、锌指核酸酶(ZFN)、归巢核酸内切酶(meganuclease)和转录激活因子样效应物核酸酶(TALEN)。最近,源自细菌免疫途径的工程化分子复合物称为CRISPR-Cas系统,已经彻底改变了基因组编辑,部分原因是它们的靶序列可以简单地用易于设计的向导RNA进行编程。尽管有了这些有希望的进展,但在治疗性基因组编辑的转化潜力可以充分实现之前,挑战仍然存在。 在一篇新的观点(Perspective)类型文章中,作者概述了SCGE联盟的目标和战略,该联盟是由美国国家卫生研究院(NIH)成立的,旨在加快制定应对这些挑战的解决方案。NIH在6年内拨款约1.9亿美元支持SCGE联盟,该联盟如今包括来自38家研究机构的72名主要研究人员,他们正在开展45个不同但又相互结合的项目。 在2017年通过一系列利益相关者研讨会回顾了该领域的现状后,NIH共同基金指出了跨越多种临床适应症、基因和靶组织的需求。大家的共识是,该领域需要新的基因组编辑器、递送系统和生物系统来衡量各种基因组编辑策略的安全性和有效性。NIH共同基金随后在2018年启动了SCGE联盟,组建了一批多学科团队,致力于解决这些需求的各个项目。 SCGE联盟的总体目标是加速基因组编辑技术向各种组织和疾病的转化。该领域的主要挑战之一是使用共同的指标和标准对各种技术进行比较。例如,一种视网膜递送系统可能会在感兴趣的基因处产生在靶插入或缺失(on-target indel),但不清楚这种相同的递送系统是否可以校正肺部中的不同基因。SCGE项目中交织着能够混合和匹配各种技术和读数的发展路径。在一个例子中,SCGE项目前三年开发的所有新的递送技术将首先在小动物(例如,小鼠)中进行测试,然后---如果成功的话---在猪和非人类灵长类动物中进行测试。由此产生的第三方数据将与更大的研究界和公众共享。SCGE联盟的一个关键价值是透明性,这使得其他人能够获得其研究产出,并利用其结果和产品为他们自己的疾病重点项目提供信息和加快研发进度。除了数据,这些作者旨在提供一系列工具、试剂、方法和最佳实践,这些工具、试剂、方法和最佳实践将被整合到SCGE治疗性基因组编辑工具包(简称SCGE工具包)中。通过这些活动和可交付成果,SCGE联盟力求减少开发新疗法所需的时间和成本,以便产生持久的影响。 2.Cell:新型CRISPR转录组学编辑“机器”有助于重塑转录组记忆 doi:10.1016/j.cell.2021.03.025 基因编辑技术的进步大幅提升了我们修饰人类基因组的能力。基于sgRNA介导的CRISPR-Cas9相关基因编辑技术能够在指定位点引入DNA断裂以失活基因功能或通过同源性DNA修复引导精确的DNA编辑,这些技术已针对基础DNA序列的靶向变化进行了优化,因此非常适合修复或引入致病性突变。然而,上述技术对内源性DNA修复机制的依赖提出了挑战,因为这些途径的复杂性可能使其难以进一步提升精确性。 最近的工作表明,表观基因组编辑有可能编写一种稳定的转录程序,该程序可以被人类细胞记住并传播,而无需可编程表观遗传调节剂的组成型表达。此外,可以通过募集DNA甲基转移酶和KRAB结构域的混合物来沉默基因。然而,迄今为止,表观遗传记忆编写程序仅对少数内源性人类基因进行了沉默测试。此外,以前的可编程表观遗传沉默子设计为每个靶基因使用两个或三个融合蛋白,这在实验操作上很麻烦(尤其是对于多重基因靶向),从而使得基因靶向策略更加复杂。此外,基于TALE的KRAB与DNMT3A和DNMT3L结构域的融合导致基因沉默效率的长期低下。目前尚不清楚这些方法对于建立具有“遗传性”的基因沉默技术的通用性以及是否存在编写和维持可遗传表观遗传沉默程序所需的基因组特征。对此,一个合理的假设是:由单个失活Cas9融合蛋白组成的表观遗传编辑元件将有助于广泛地探索“可遗传”表观遗传基因沉默技术的实用性。 在最近发表在《Cell》杂志上的一项研究中,来自UCSF的Jonathan S.Weissman团队介绍了一种名为“CRISPRoff”的技术,包括其设计理念,开发过程和技术验证,CRISPRoff是一种可编程的表观遗传记忆编写器蛋白,可以持久抑制基因表达。研究发现,CRISPRoff的瞬时表达编写了一种表观遗传程序,从而维持人类细胞450多次的细胞分裂,突显出这种形式的基因沉默是稳定且可遗传的。CRISPRoff表观遗传记忆可以使用称为CRISPRon的多部分表观遗传编辑器进行逆转,该编辑器可特异性删除DNA的甲基化修饰并募集转录元件。 使用全基因组CRISPRoff筛选,作者证明了这种方法可以持久且特异性地沉默绝大多数蛋白质编码基因,并且具有广泛的靶向性。此外,对于CRISPRoff介导的稳定基因沉默而言,规范的CpG岛标签不是必需的。 最后,作者证明了CRISPRoff可用于在人类干细胞中介导沉默增强和工程化的基因沉默程序,这些程序在神经元的不断分化过程中持续存在。总而言之,该系统使研究者们能够广泛探索表观遗传沉默的生物学规则,并提供了一个强大的工具来控制基因表达,靶向增强子以及探索表观遗传的原理。 3.Science:揭示蛋白QSER1保护DNA甲基化谷免受新生甲基化 doi:10.1126/science.abd0875;doi:10.1126/science.abh3187 DNA甲基化对哺乳动物的发育至关重要,它的失调可导致严重的病理状况,包括免疫缺陷-着丝粒不稳定-面部异常综合征(immunodeficiency-centromeric instability-facial anomalies syndrome,ICF)和小脑性侏儒症(microcephalic dwarfism)。酶DNMT和TET负责DNA甲基化的添加和去除,但它们如何协调调节甲基化景观仍然是一个核心问题。在一项新的研究中,通过使用一种基因敲入的DNA甲基化报告基因,美国研究人员在人胚胎干细胞(hESC)中进行了全基因组CRISPR-Cas9筛选,以发现DNA甲基化调节因子。相关研究结果发表在2021年4月9日的Science期刊上,论文标题为“QSER1 protects DNA methylation valleys from de novo methylation”。 这些作者重点研究了二价启动子(bivalent promoter),其定义为同时存在激活性(H3K4me3)和抑制性(H3K27me3)组蛋白标记,并且通常由多梳抑制复合物1和2(PRC1和PRC2)占据。在干细胞或祖细胞中,二价启动子被认为将发育调节因子维持在“蓄势待发的状态”,准备在分化时激活,并且它们对在功能失调的细胞背景(比如癌症或衰老)下的DNA高度甲基化敏感。构建一种基因敲入DNA甲基化报告细胞系提供了一个可视化观察表观遗传改变的绝佳机会,否则在干细胞状态下,基因表达变化是“看不见的”。通过使用PAX6 P0二价启动子作为代表位点,这些作者旨在在具有类似染色质特征的区域发现调节DNA甲基化的机制,这不仅可以了解发育过程中的基因调控,也可以了解疾病中的表观遗传失调。 他们的筛选不仅成功地发现了已知的甲基化调节因子,如TET1、TDG和KDM2B,而且还发现了功能上未被描述的基因,包括QSER1。像TET蛋白一样,QSER1保护二价启动子和准备好的增强子(以H3K4me1为标志,但不以H3K27ac为标志)免受高度甲基化的影响。然而,与TET蛋白对调控区域的更普遍的保护作用不同,QSER1优先保护PRC2结合和H3K27me3标记的区域和DNA甲基化谷(DNA methylation valley,DMV)。 DMV也被称为DNA甲基化峡谷(DNA methylation canyon),可识别存在于许多谱系的细胞中的较大(≥5 kb)的低甲基化区域,并在脊椎动物中保守。它们富含二价启动子、发育基因和转录因子,包括PAX6和HOX基因。QSER1和TET1在染色质免疫共沉淀测序(ChIP-seq)测得的基因组占有率中表现出高度的相关性,且两者在DMV中都高水平结合,然而新生甲基转移酶DNMT3A和DNMT3B在DMV中未结合,在DMV的两侧区域相对富集。进一步的蛋白质组和基因组分析显示,QSER1和TET1有许多共同的相互作用蛋白,相互依赖地高效招募到DNA上,并合作限制DNMT3A和DNMT3B在DMV中的侵袭。此外,剔除DNMT3B可以逆转QSER1基因敲除(KO)hESC细胞中的高度甲基化。此外,同时敲除QSER1和TET1对DNA甲基化和基因表达的影响比仅敲除QSER1或TET1都要强,并导致hESC不能分化为PDX1+NKX6.1+胰腺祖细胞。 4.Cell子刊:科学家通过结合CRISPR和人类ipsC技术,建立了人类白血病发生模型 doi:10.1016/j.stem.2021.01.011 来自美国纽约州西奈山伊坎医学院肿瘤科学系的Eirini PPapapetrou教授带领团队,在Cell子刊《Cell Stem Cell》杂志上发表了题为“Sequential CRISPR gene editing in human ipsCs charts the clonal evolution of myeloid leukemia and identifies early disease targets”的研究论文。 该研究团队专注于炎症信号传导,因为两种类型的早期变化分析主要由炎症相关基因决定。AML(SAR)阶段所需的基因表达和染色质可及性变化以及在早期(SA)阶段已经建立的基因表达和染色质可及性变化主要涉及炎症相关基因。此外,最早的持续基因表达和染色质可及性变化的分析主要涉及炎症相关基因。为了进一步支持这一点,可获得染色质的TF基序分析鉴定了NF-κB(先天免疫和炎症反应的主要介质)和FOS/JUN(AP-1),一种调节免疫和炎症反应的TF家族,作为主要的a和SA阶段的TF。最近的研究已经描述了来自TET2和DNMT3A突变的鼠模型的巨噬细胞中增加的炎症反应。该研究团队的数据表明,这些可能扩展到ASXL1突变,这是继TET2和DNMT3A之后的第三大最常见的CH突变,并且它们已经在HSPC水平上表现出来。该研究团队在A,SA和SAR细胞中HSPC水平的炎症信号传导失调的发现与MDS/AML HSPC中细胞内在先天免疫信号传导失调的最新证据一致。 多种独立的机制有助于MDS和AML中先天免疫信号通路的过度激活,它们聚集在涉及IRAK1,IRAK4和TRAF6的中心复合物上。包括该研究团队在内的临床前研究已经证明了用小分子或抗体策略抑制MDS和AML中IL-1R/TLR-IRAK-TRAF6信号传导的潜力。值得注意的是,IRAK1和IRAK4抑制剂目前正在进行AML,MDS,MPN,淋巴瘤以及炎症和免疫相关疾病的临床试验。此外,该研究团队的数据表明HSPC水平的细胞内在炎症信号传导失调已经存在于CH阶段。因此,该研究团队的数据支持开发针对这些途径的疗法的基本原理,这些疗法不仅针对MDS和AML,而且还可能针对CH阶段的早期干预。 总而言之,通过结合CRISPR和人类ipsC技术,该研究团队建立了人类白血病发生模型,使该研究团队能够绘制出构成疾病进展基础的分子事件图,并确定对AML至关重要且在疾病进展早期发生的分子变化,并且这可能为改善靶向治疗或疾病进展的生物标志物提供参考依据。 5.Mol Ther:CRISPR-Cas9基因编辑技术可用于治疗地中海型贫血症 doi:10.1016/j.omtm.2021.03.025 CRISPR/Cas9基因编辑技术被认为是治疗各种单基因遗传性疾病的最有希望的策略之一。在最近发表于《Molecular Therapy》杂志上的一项研究中,来自意大利费拉拉大学的Alessia Finotti教授等人首次通过CRISPR/Cas9基因编辑技术对β039地中海贫血突变进行了校正。结果证明,在对来自纯合的β039地中海贫血患者的红系前体细胞进行CRISPR/Cas9校正后,能够获得正常的β-globin。等位基因特异性PCR和测序证明了这一点。此外,校正后的β-珠蛋白mRNA的积累以及相关的β-globin和成人血红蛋白(HbA)也能够顺利生成。该结果为治疗地中海贫血症提供了新的思路。 首先,作者介绍了利用CRISPR/Cas9基因编辑技术对地中海贫血症患者进行治疗的策略。首先,作者从患者体内提取得到了携带突变特征的红细胞前体细胞,并且在不含促红细胞生成素(EPO)的培养基中体外培养7天。之后向培养基中加入EPO以刺激细胞分化以及血红蛋白的产生。3天后,向细胞中转染CRISPR-Cas9组件,并且继续培养5天。在此过程中,通过多种手段对细胞的基因组,转录组以及蛋白质水平进行检测。 基因组水平检测结果表明,CRISPR-Cas9能够高效地修正地中海性贫血患者中相关基因的突变。具体而言,β39突变核苷酸为胸腺嘧啶(T),经过编辑后成功地转变为正常的胞嘧啶(C)。丰度分析结果显示,在CRISPR-Cas9转染之后,至少4.5%的细胞中突变位点得到了修正。进一步,作者检测了修正后的mRNA表达水平。RT-PCR检测结果表明:修正后的mRNA表达水平相比未处理组中原始突变mRNA,至少高8倍左右。 最终,作者通过WB以及HPLC技术,验证了基因编辑后的细胞能够生成正确的β-globin,表明其功能能够得到恢复,此外,HbA蛋白的表达也得到了明显的恢复。 6.Mol Cell:光敏性sgRNA调控Cas9蛋白的失活 doi:10.1016/j.molcel.2021.02.007 对CRISPR-Cas9技术的精确调控可以提高其在基因编辑方面的安全性和适用性,然而这一目标目前却仍受“不完全失活”、“速率过慢”等缺点的限制。为了克服这些障碍,在最近一项研究中,来自约翰霍普金斯大学的Taekjip Ha教授等人设计了光敏感、可裂解的guide RNA(pcRNA),从而能够利用光照达到降解sgRNA分子,进而调控Cas9核酸酶基因编辑活性的目的。相关结果发表在最近的《Molecular Cell》杂志上。 首先,作者在gRNA分子中插入了光敏可切割基团,构建出了pcRNA分子,进而在体外实验中验证了该修饰后的sgRNA是否受光照的调节。实验结果表明,在缺乏光照的情况下,pcRNA与cas9混合物能够高效地切割DNA底物。相反地,在接受350nm光照的情况下,DNA分子则几乎没有受到切割。光照30s就足以达到灭活sgDNA-cas9复合体活性的目的。此外,作者还证明了pcRNA分子同时能够兼容其它类型的CRISPC-cas9平台,例如单核酸碱基编辑。在转染了AncBE4max以及pcRNA分子的HEK293T细胞中,光照2分钟就足以起到灭活单碱基编辑活性的效果。 众所周知,脱靶现象是基因组编辑技术中的难题,为了探究光敏基团修饰能否提高sgRNA-cas9靶向编辑的特异性,作者检测了基因组中VEGFA2以及HEK4等脱靶位点的胞嘧啶突变效应。结果显示,在共转染pcRNA与cas9/AncBE4max的HEK293T细胞中,脱靶位点的基因突变几率明显降低。与野生型sgRNA相比,光敏可切割的pcRNA的中靶/脱靶比例升高了2-9000倍。为了了解其背后的分子机制,作者通过体外切割实验检测了cas9/pcRNA的切割动力学特征。结果表明,在所有接受检测的靶向序列中,pcRNA的初始切割速率相比传统sgRNA明显更慢,但最终的切割速率达到相当的水平。此外,在sgRNA序列与靶向序列存在差异的情况下,传统的sgRNA仍旧能够介导高速率的切割,而pcRNA的切割速率明显更慢。这些结果表明pcRNA相比传统sgRNA具有更低的脱靶率。 之后,作者研究了pcRNA-Cas9达到有效切割活性时所需的最低时间,作者进行了系统的动力学分析并且绘制了时间曲线。结果表明,尽管因序列差异存在较高的异质性,但对于AncBEmax而言最低时间仅需4小时,而Cas9则需要36小时。 7.Nat Commun:"升级版"编辑器可在成年小鼠中进行基因校正并诱导癌症发生 doi:10.1038/s41467-021-22295-w Prime Editor(PE)”是一类新型的基因编辑工具,该技术无需依赖于双链DNA断裂或外源供体DNA模板,即可介导基因组修饰。通过prime editing guide RNA中本身存在的“模板”序列,从而实现精确的单碱基替换或小规模的插入/缺失突变。为了探究该工具在成年小鼠中的基因编辑能力,来自麻省大学医学院的Wen Xue团队进行了深入研究。相关结果发表在最近的《Nature Communications》杂志上。 此前研究发现,Cas9元件中细胞核定位信号(NLS)序列的组成和数量会影响其基因编辑效率,原始的二代PE(PE2)包含两个NLS序列,转染以及细胞定位染色成像结果显示,约60%的蛋白质存在于U2OS细胞的细胞核中,约85%的蛋白质存在于HeLa细胞的细胞核中。在此基础上,作者在C末端添加N端c-Myc NLS序列,同时保留SV40 NLS序列,结果显示:改造后的PE2能够完全定位于细胞核内,作者将其命名为PE2*。此外,作者还对PE2*的主要框架进行了改造,使其能够识别更加广泛的PAM序列。为了研究改造后的PE2*能否提高其基因编辑效率。作者比较了HEK293T mCherry报告系统在分别转染了PE2和PE2*之后的核苷酸转化比例。转染后3天,作者通过流式细胞术量化PE2以及PE2*的编辑效率。结果显示与PE2(9.2%至16.5%)相比,PE2*的编辑效率提高了1.5-1.6倍(14.3%至26.4%)。在另外一个相似的报告系统中,PE2*的基因编辑效率比PE2提高了1.6-1.9倍。 在此基础上,作者研究了升级版的PE2*在矫正遗传性疾病方面的作用。对此,作者使用了一个单基因突变的疾病模型进行验证。Alpha-1抗胰蛋白酶缺乏症(AATD)是由Serpin肽酶抑制剂家族A成员1(SERPINA1)基因突变引起的遗传性疾病。SERPINA1(PiZ等位基因)中的E342K突变(G到A)是最常见的突变,该突变会导致严重的肺脏和肝脏疾病。细胞培养实验证明,PE2*的碱基矫正比例为6.4–15.8%,而PE2仅为1.9–9.9%。总的来说,PE2*相比PE2的基因矫正能力提高了1.6到3.4倍。最后,作者还证明了该升级版的PE2*在活体中的基因编辑能力。结果显示,PE2*能够更加高效地改变小鼠中CTNNB1(β-catenin)的S45F突变(C-T),从而提高肿瘤发生的水平。而利用AAV传递,则可以起到纠正小鼠肝脏中致命性突变(SERPINA1蛋白E342K突变)的作用。 查看详细>>

来源: 点击量:174

9 2021年3月HIV研究亮点进展 2021-04-01

人类免疫缺陷病毒(human immunodeficiency virus,HIV),即艾滋病(AIDS,获得性免疫缺陷综合征)病毒,是造成人类免疫系统缺陷的一种病毒。1983年,HIV在美国首次发现。它是一种感染人类免疫系统细胞的慢病毒(lentivirus),属逆转录病毒的一种。HIV通过破坏人体的T淋巴细胞,进而阻断细胞免疫和体液免疫过程,导致免疫系统瘫痪,从而致使各种疾病在人体内蔓延,最终导致艾滋病。由于HIV的变异极其迅速,难以生产特异性疫苗,至今无有效治疗方法,对人类健康造成极大威胁。 自上世纪八十年代以来,艾滋病的流行已经夺去超过3400万人的生命。据世界卫生组织(WHO)统计,据估计,2017年,全世界有3690万人感染上HIV,其中仅59%的HIV感染者接受抗逆转录病毒疗法(ART)治疗。目前为止HIV仍然是全球最大的公共卫生挑战之一,因此急需深入研究HIV的功能,以帮助研究人员开发出可以有效对抗这种疾病的新疗法。为阻止病毒大量复制对免疫系统造成损害,HIV感染者需要每天甚至终身服用ART。虽然服用ART已被证明能有效抑制艾滋病发作,但这类药物价格昂贵、耗时耗力且副作用严重。人们急需找到治愈HIV感染的方法。 1.Nat Immunol:糖尿病药物二甲双胍新用途!它通过抑制CD4 T细胞中的氧化磷酸化来抑制HIV复制 doi:10.1038/s41590-021-00898-1 在一项新的研究中,来自美国北卡罗来纳大学教堂山分校的研究人员发现了HIV病毒的一个重要的弱点,并且在临床前实验中证实,一种广泛使用的糖尿病药物二甲双胍似乎能够利用这一弱点。相关研究结果于2021年3月25日在线发表在Nature Immunology期刊上,论文标题为“Multi-omics analyses reveal that HIV-1 alters CD4+T cell immunometabolism to fuel virus replication”。论文通讯作者为北卡罗来纳大学教堂山分校遗传学系教授Jenny Ting博士和马里兰大学医学院药理学教授Lishan Su博士。 具体而言,这些作者发现,当HIV感染称为CD4 T细胞的免疫细胞时,它会通过促进细胞产生化学能的一个关键过程来帮助自身复制。他们还发现,在细胞培养物和小鼠实验中,糖尿病药物二甲双胍可以抑制同样的过程,从而抑制HIV在这些细胞中的复制。 2.1篇Science+2篇Science子刊论文同日发表,揭示HIV候选疫苗有效之谜 doi:10.1126/science.abe9233;doi:10.1126/sciimmunol.abg1703;doi:10.1126/sciimmunol.abg5413 在首次设计出一种新型的基于恒河猴巨细胞病毒毒株68-1(RhCMV)的疫苗约二十年后,来自美国俄勒冈健康与科学大学的研究人员正在解开为什么它能在大约一半非人类灵长类动物中阻止并最终清除HIV的猴子版本(称为SIV),以及为什么它是阻止人类感染HIV的一种有希望的候选疫苗。 在2021年3月25日,这些构建RhCMV疫苗平台的研究人员描述了它发挥作用的不寻常的生物机制。相关研究结果以一篇Science论文(下称第一篇论文)和两篇Science Immunology论文(下称第二篇论文和第三篇论文)的形式发表,论文标题分别为“Modulation of MHC-E transport by viral decoy ligands is required for RhCMV/SIV vaccine efficacy”、“HLA-E–restricted,Gag-specific CD8+T cells can suppress HIV-1 infection,offering vaccine opportunities”和“Cytomegaloviral determinants of CD8+T cell programming and RhCMV/SIV vaccine efficacy”。 这些发现也有助于对在俄勒冈健康与科学大学开发的基于人CMV(HCMV)的HIV实验性疫苗(称为VIR-1111)进行微调,其中VIR-1111如今正在进行1期临床试验评估。该临床试验由Vir生物技术公司开展,该公司从俄勒冈健康与科学大学获得巨细胞病毒(CMV)疫苗平台技术许可。 3.NEJM:两项临床试验表明广泛中和抗体可有效预防敏感性HIV毒株感染 doi:10.1056/NEJMoa2031738;doi:10.1056/NEJMe2101131 两项AMP概念验证研究表明,一种名为VRC01的广义中和抗体(bnAb)能有效防止30%对这种bnAb敏感的HIV毒株感染。这一发现是在撒哈拉以南的非洲和美国、南美观察到的。VRCO1并不能阻止对这种bNAb有抵抗性的HIV毒株感染。由于抵抗性HIV毒株占这些地区循环毒株的近70%,VRC01治疗组和安慰剂对照组在整体预防HIV感染方面没有区别。对bNAb的敏感性是通过测量病毒对抗体中和的敏感性的实验室测试来评估的。 这两项临床研究(HVTN 704/HPTN 085和HVTN 703/HPTN 081)于2016年开始,成功招募了4623名参与者。AMP研究由美国国家卫生研究院下属的国家过敏与传染病研究所(NIAID)赞助和资助。这两项研究由HIV疫苗试验网络(HVTN)和HIV预防试验网络(HPTN)联合开展。相关研究结果发表在2021年3月18日的NEJM期刊上,论文标题为“Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition”。 4.PLoS Pathog:一种实验性组合疗法有望在ART中断后延缓HIV病毒反弹 doi:10.1371/journal.ppat.1009339 在一项新的临床前研究中,来自美国军事HIV研究计划(MHRP)的研究人员发现联合使用一种TLR7激动剂和两种广泛中和抗体的实验性疗法可以延缓感染SHIV的恒河猴在抗逆转录病毒疗法(ART)中断后的病毒反弹。相关研究结果近期发表在PLoS Pathogens期刊上,论文标题为“TLR7 agonist,N6-LS and PGT121 delayed viral rebound in SHIV-infected macaques after antiretroviral therapy interruption”。 这种实验性联合疗法包括TLR7激动剂GS-986和两种靶向HIV包膜的不同区域的广泛中和抗体(bnAb)N6-LS和PGT121。恒河猴在感染后14天开始接受病毒抑制性ART治疗,这种从感染到治疗的时间跨度反映了急性HIV感染的可行性。然后,这些作者在ART中断后给予这种实验性联合治疗,并测量SHIV病毒载量反弹需要多长时间。 5.PNAS:调节HIV表达的关键分子机制 doi:10.1073/pnas.2012835118 为了确定影响HIV持久性的建立,维持和逆转的细胞途径,研究人员用酵母菌进行了研究,以筛选出一个大型人为因素文库,以与负责病毒表达的HIV脱氧核糖核酸(DNA)序列结合。结果,他们确定了几种可能的调节因子,并确认一部分因子确实通过增加和减少HIV表达水平来控制感染细胞中的HIV。 Henderson说:“我们的研究确定了影响HIV的新颖转录因子,并使人们认识到影响不同HIV菌株激活和抑制的细胞网络。”研究人员认为,了解控制HIV表达的机制将有助于深入了解HIV复制,潜伏期和发病机理。亨德森补充说:“通过了解控制艾滋病毒的细胞途径,我们也许能够针对这些途径并改变这种潜在的水库的行为。” 6.J Virol:揭秘!为何当前的药物疗法无法恢复某些HIV患者机体的免疫系统功能? doi:10.1128/JVI.00180-21 近日,一项刊登在国际杂志Journal of Virology上的研究报告中,来自芬兰赫尔辛基大学等机构的科学家们通过研究发现,一种能开启“侵蚀”机体免疫力过程的蛋白激酶或能明显促进HIV患者机体的免疫缺陷,阻断这些蛋白激酶的药物或能提供一种策略来治疗那些通过抗逆转录病毒疗法都无法恢复机体免疫力的HIV患者。 抗病毒药物通常能用来治疗HIV感染,这类药物能抑制疾病不断进展;尽管目前科学家们在HIV药理学治疗上取得了很大进展,但可用的药物仍然不能完全清除患者体内的病毒;然而,大约五分之一的HIV患者机体的免疫系统并不能够像预期那样恢复,即反映机体免疫系统状态的CD4 T细胞的数量仍然很低,即使患者机体血液中HIV病毒的数量被抑制到非常低的水平或低于测量的阈值;在这类患者中研究人员就能检测到“侵蚀”机体免疫系统的慢性免疫激活的指征。 7.NEJM:ALVAC-HIV疫苗接种方案在南非2b-3期临床研究失败 doi:10.1056/NEJMoa2031499 近日研究人员公布了ALVAC-HIV+AIDSVAX B/E免疫方案在南非2b-3期临床研究结果。在本次2b-3期试验中,5404名基线未感染HIV-1的成年人接受疫苗(2704名参与者)或安慰剂接种(2700名参与者)。疫苗接种方案为在基线和第1个月注射ALVAC-HIV,然后在第3个月、第6个月、第12个月和第18个月强化注射四次ALVAC-HIV,强化接种时,同时接种gp120蛋白的亚单位疫苗和MF59佐剂。研究的主要疗效终点为至24个月时HIV-1感染率。 2020年1月,中期分析显示ALVAC-HIV+AIDSVAX B/E方案在预防HIV感染方面无效,随后停止了后续疫苗接种。试验参与者的中位年龄为24岁,70%女性。疫苗组和安慰剂组的不良事件发生率相似。在24个月的随访中,疫苗组138名参与者和安慰剂组133名参与者被诊断为HIV-1感染(危险比1.02)。 8.JAHA:艾滋病血清状态与心脏结构和功能之间的关联 doi:10.1161/JAHA.120.019709 近日,心血管疾病领域权威杂志JAHA上发表了一篇研究文章,研究人员旨在调查在联合抗逆转录病毒治疗时代,伴有或不伴有HIV感染的男性,通过二维超声心动图评估的心脏结构以及收缩和舒张功能是否存在差异。 研究人员对来自MACS(多中心艾滋病队列研究)的1195名男性进行了横断面分析,他们于2017年至2019年期间完成了经胸超声心动图检查。研究人员通过多变量回归分析评估了HIV血清状况与超声心动图指标之间的关联性,并调整了人口统计学和心血管危险因素。在HIV+男性中,研究人员还调查了HIV疾病严重程度标志物与超声心动图参数之间的关联。 参与者平均年龄为57.1±11.9岁;29%的参与者是黑人,而55%我HIV+。大多数感染HIV+的男性(占77%)被病毒抑制。92%参与者接受了联合抗逆转录病毒治疗。左心室(LV)收缩功能障碍(射血分数<50%)患病率较低,HIV血清状态与左心室射血分数无关。 9.Neurology:艾滋病患者,脑白质病变比普通人更明显 doi:10.1212/WNL.0000000000011702 美国NIH下属的国家神经系统疾病研究中的Yair Mina等人探究了HIV感染控制良好的患者与无HIV的对照组(CWOH)相比,脑白质高信号病变(WMH)的频率、严重程度和临床相关性。 他们纳入了203名感染控制良好(抗逆转录病毒治疗至少一年,血浆病毒量<200拷贝/毫升)的PLWH患者,和58名PLWH和社会人口统计学匹配的无艾滋病毒对照组(CWOH)。 通过Fazekas视觉评分表评估WMH负荷。主要结果测量是WMH负荷增加,由Fazekas总分≥2确定。并进行多重logistic回归分析,以评估HIV血清状态对WMH负荷的影响,并确定PLWH组中与WMH相关的MRI、CSF和临床变量。 他们发现,PLWH组WMH负荷增加的HR为3.7(p=0.0004)。对于PLWH组,WMH负荷增加与年龄较大、男性性别、吸烟、高血压、丙型肝炎病毒合并感染有关,也与CSF中存在可测量的肿瘤坏死因子-α有关。 这个聚焦于HIV患者中的研究,重要意义在于发现了HIV血清状态与CSF中存在的肿瘤坏死因子-α有关。而且HIV血清状态会影响脑WMH的程度,这种影响主要与衰老和可提前干预的共患病有关。 查看详细>>

来源: 点击量:245

10 2021年3月CRISPR/Cas最新研究进展 2021-04-01

基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。2020年10月,德国马克斯-普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A.Doudna博士因在CRISPR-Cas9基因编辑方面做了的贡献荣获2020年诺贝尔化学奖。 CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 1.Nat Commun:科学家开发出新型基因编辑工具来纠正诱发人类遗传性疾病的突变 doi:10.1038/s41467-021-21559-9 近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自新加坡A*STAR研究所等机构的科学家们通过研究开发了一种名为C-G碱基编辑器(CGBE,C-to-G Base Editor)的基于CRISPR的基因编辑器,其或能帮助纠正诱发人类遗传性疾病的突变。 CGBE编辑器推动了科学家们广泛采用CRISPR-Cas9技术来使得对人类基因组进行“分子手术”成为可能,CRISPR-Cas9技术目前能用来干扰靶向基因,但当需要对特定序列进行精确更改时,这种技术的效率就会降低;而CGBE编辑器能通过实现有效和精准的基因改变来解决科学家们所面临的问题;其主要由三部分组成:1)修饰后的CRISPR-Cas9能定位突变的基因并将整个编辑器聚焦于这一基因;2)一种能从化合物种移除氨基基团的脱氨酶能靶向缺失的碱基C,并将其进行替换;3)最后,蛋白质能够开启细胞机制来利用碱基G取代有缺陷的碱基C;这就能够帮助研究人员实现从C到G的直接转换,并能纠正突变从而治疗人类遗传性疾病。 2.Nature子刊:CRISPR技术揭示癌症扩散的机制 doi:10.1038/s42003-021-01912-w 近日,惠康桑格研究所(Wellcome Sanger Institute)科学家的最新研究表明,以前与癌症无关的基因在某些癌症向肺部的扩散中起关键作用。研究小组发现,当基因LRRN4CL在小鼠中过度表达时,皮肤癌黑色素瘤更可能转移到肺部。 该研究于近日发表在《Communication Biology》杂志上,该研究还证实LRRN4CL的过表达与结肠癌,乳腺癌和膀胱癌向肺的转移有关。 3.eLife:新型全基因组CRISPR筛选技术或能发现与癌症发生相关的关键通路 doi:10.7554/eLife.63603 近日,一项刊登在国际杂志eLife上的研究报告中,来自范德堡大学等机构的科学家们通过研究开发了一种新型全基因组CRISPR筛选技术,其或能帮助揭示80%-90%的肿瘤是如何生长的。这种新方法能够检测一种特殊的遗传开关,而该开关能诱导持续性的细胞分裂(癌症开始的标志物)。 文章中,研究人员共对4000万个上皮细胞进行了筛选,来避免错过任何可能的筛选,但要想在如此庞大的数量中找到一个令人感兴趣的基因就好像大海捞针一样困难;为了解决这个问题,研究人员开发了一种策略,即利用不同的颜色来标记处于不同细胞周期阶段的细胞,从而对其进行分类,在筛选过程中,研究人员发现了一种众所周知的肿瘤抑制因子NF2。让他们惊讶的时,通过剔除激活机体先天性免疫力的蛋白TRAF3,细胞就会停止接收休息信号。尽管此前他们并未发现TRAF3与密度依赖性的细胞增殖相关,但本文研究结果表明,如果没有该蛋白的话,无论细胞生长地多密集,其都会继续进行分裂;这一特征与癌症发生有关,因此这一特征或许具有重要的意义。 4.Nat Commun:新方法促进抗体类药物开发 doi:10.1038/s41467-021-21518-4 近年来,治疗性抗体已经改变了癌症和自身免疫性疾病的治疗方法。现在,瑞典隆德大学的研究人员基于“遗传剪刀”CRISPR-Cas9开发了一种新的高效方法,该方法可促进抗体开发。该发现发表在《Nature Communications》杂志上。 抗体药物是增长最快的一类药物,几种治疗性抗体用于治疗癌症。它们有效,通常无副作用,并通过识别体内异物而受益于人体自身的免疫系统。通过与细胞上的特定靶分子结合,抗体可以激活免疫系统,或引起细胞“自杀”。 5.Stem Cells:GLI1基因有助于治疗多种癌症 doi:10.1002/stem.3341 近日,芝加哥安·罗伯特·H·卢里儿童医院的斯坦利·曼恩儿童研究所的科学家发现,促癌的GLI1基因的DNA内的一个区域直接负责调节该基因的表达。这些发现发表在《Stem cell》杂志上,暗示GLI1内的这一区域可能被作为癌症治疗的靶标,因为关闭GLI1会打断癌症的过度细胞分裂特性。 共同资深作者Philip Iannaccone教授说:“从以前的研究中,我们知道GLI1驱动着导致许多癌症的持续的细胞增殖,而且该基因也刺激了它自身的表达。我们在人类活体胚胎干细胞中建立了去除GLI1调控区的功能,从而消除了GLI1的表达并阻断了其活性。这些发现是有希望的,并且可能指向癌症的治疗靶标。” Iannaccone博士及其同事使用CRISPR基因编辑技术删除了人类胚胎干细胞中GLI1与DNA的结合区,从而干扰了该基因驱动血液,骨骼和神经细胞胚胎发育的正常活动。 6.Science Advances:微针辅助基因组编辑可协同治疗炎症性皮肤病! doi:10.1126/sciadv.abe2888 近日,来自中国浙江大学的一个研究小组在Science Advance上发表题为《Microneedle-assisted genome editing:A transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders》的研究论文。 该研究发现利用微针辅助基因组编辑技术,使CRISPR-Cas9蛋白经皮靶向控制炎症因子合成基因,可协同治疗炎症性皮肤疾病。 7.Science:CRISPR基因沉默机制开拓慢性疼痛新疗法 doi:10.1126/science.abi4517 近日,美国加州大学圣地亚哥分校的一个研究小组在顶尖期刊Science上发表题为《Gene-silencing injection reverses pain in mice》的研究论文。 研究通过一项有趣的验证研究表明,CRISPR基因疗法可能是治疗慢性疼痛的阿片类药物的替代品。初步研究结果表明,在暂时抑制与疼痛状态相关的基因活动后小鼠的疼痛敏感性降低。 8.Molecular Therapy:治一次管3年!基因编辑展现长效降低胆固醇能力 doi:10.1016/j.ymthe.2021.02.020 最近,由美国宾夕法尼亚大学基因治疗专家团队发表在Molecular therapy杂志上的新研究,通过对PCKS9基因的编辑,实现了基因编辑治疗的两个关键目标:安全性和持久性。研究首次报道,一次性基因编辑可以显著降低动物体内的PCSK9蛋白和LDL-C水平长达3年之久! 研究人员使用了由Precision BioSciences公司开发的ARCUS基因组编辑技术平台。试图确定通过腺相关病毒(AAV),将靶向PCSK9基因的上述编辑西永递送到非人灵长类动物(NHP)肝脏中,随后进行长达3年的监测。 结果显示,经过治疗的动物表现出循环PCSK9和LDL-c的持续减少,其中PCSK9蛋白水平持续降低了85%,而LDL-C水平持续降低56%。同时PCSK9位点的基因编辑十分稳定,脱靶率低,肝脏组织病理没有发现明显的不良变化。 此外,在3年期间,肝脏细胞已经经历了多次的迭代,这些结果意味着基因编辑对基因组的改变被传递到新一代的肝细胞中,支持PCSK9和LDL-C水平的降低是永久性的。这些研究表明,体内靶向基因破坏发挥了持久的治疗效果,同时并没有发生明显的不良反应,因此结果支持临床转化。 查看详细>>

来源: 点击量:229

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190