您当前的位置: 首页 > 成员单位动态
人的肠道是数百万细菌的宿主,这些细菌对宿主的发育、免疫、代谢、神经等具有重要作用。因此,靶向肠道菌群已经成为重大疾病治疗的策略。研究表明,来自植物包括中草药中不可消化的膳食纤维是塑造肠道菌群组成的主要因素之一。木聚糖(Xylan)作为第二丰富的植物细胞壁多糖,不但是中药中的活性成分,也是常用的膳食纤维之一,对塑造肠道菌群组成具有重要作用。肠道拟杆菌基因组上约20%的基因构成Polysaccharides utilization loci(PULs)参与碳水化合物的代谢,虽然目前已鉴定出了大量的PULs,但是对PULs的功能研究尚待探讨。解木聚糖拟杆菌XB1A(Bacteroides xylanisolvens XB1A,BX)是从一名法国成年人的粪便分离鉴定的一株对木聚糖具有较好活性的菌株,研究报道解木聚糖拟杆菌具有抗非酒精性脂肪性肝炎(NASH)的作用,而木聚糖具有改善脂代谢、炎症、糖尿病、动脉粥样硬化和结肠癌等疾病症状活性。然而,解木聚糖拟杆菌如何降解和利用木聚糖发挥上述活性尚不得而知。因此,阐明PUL_Xylan的功能机制尤为重要。 2023年5月19日,Carbohydrate Polymers杂志在线发表了中国科学院上海药物研究所丁侃研究员团队与苏州大学张真庆教授团队合作完成的题为“Degradation of xylan by human gut Bacteroides xylanisolvens XB1A”的研究论文,报道了解木聚糖拟杆菌如何降解铁皮石斛中木聚糖S32的分子机制。 研究团队详细阐明了解木聚糖拟杆菌基因组上的PUL43_Xylan、PUL70_Xylan降解铁皮石斛源木聚糖S32的分子机制。研究发现,PUL43和PUL70分别编码的内切木聚糖苷酶Xyn10A和Xyn10B可能通过协作的方式降解木聚糖S32的主链,且这两个木聚糖苷酶主要分布在拟杆菌的基因组上,提示拟杆菌可能是降解木聚糖的主要菌株。科研人员还发现,BX_29290SGBP是一个新的木聚糖捕获蛋白,可以特异性的识别长链的木聚糖,而对低聚木糖的识别无特异性。解木聚糖拟杆菌代谢木聚糖产生对宿主有益的小分子代谢物,结合解木聚糖拟杆菌的益生作用,科研人员推测解木聚糖拟杆菌与木聚糖联用可能具有潜在的改善益生作用。该研究成果将为以木聚糖为物质基础靶向调控肠道解木聚糖拟杆菌提供理论基础,同时木聚糖有望成为靶向调节肠道菌群结构的潜在先导化合物。 中国科学院上海药物研究所丁侃研究员、李美霞副研究员以及苏州大学张真庆教授为本文的共同通讯作者,上海药物所与南京中医药大学联合培养硕士研究生赵婷婷和丁侃组已毕业硕士研究生乐晗为本文的共同第一作者。该课题获得国家重点研发计划资助、国家自然科学基金、广东省科学技术厅、中山市科学技术厅等项目的基金支持。 全文链接:https://www.sciencedirect.com/science/article/abs/pii/S0144861723004708 查看详细>>
来源: 点击量:0现有肿瘤学研究大多聚焦肿瘤组织,通常将癌旁组织作为对照,很少进行深入研究。然而,基因测序和转录组分析表明,癌旁组织存在一定的基因突变和染色质拷贝数变异,与正常组织明显不同,被认为是一种介于正常组织和肿瘤组织的中间态。原发性肝癌是我国发病率第四位、死亡率第二位的恶性肿瘤。早期研究通过转录组测序,在肝细胞癌癌旁组织FFPE样本中报道了预后相关的基因表达特征,揭示了癌旁组织的分子异质性。蛋白质是生命活动的主要执行者,是95%以上药物的作用靶点,目前尚缺乏从蛋白质组层面对肝细胞癌癌旁组织的系统研究。 2023年6月2日,中国科学院上海药物研究所周虎研究员团队与复旦大学附属中山医院樊嘉院士和高强教授团队合作,在National Science Review(NSR)杂志发表了题为“Proteomics of adjacent-to-tumor samples uncovers clinically relevant biological events in hepatocellular carcinoma”的研究成果,该研究采用蛋白质组学技术系统揭示了肝细胞癌癌旁组织临床特征相关的分子特征,并深入探讨了肝癌癌旁组织与正常肝组织的蛋白质组学差异。 研究人员前期根据蛋白质组特征将肝细胞癌分成了三个亚型,即代谢驱动型、微环境失调型和增殖驱动型(Cell,2019),对三个亚型的配对癌旁组织进行蛋白质组分析发现其具备对应癌组织的分子分型特征,提示癌旁组织蛋白质组具有分子异质性(图a)。基于此,科研人员采用非监督聚类方法,根据蛋白质组数据将癌旁组织分为两个亚型S1型和S2型。其中S2型病人约占病人总数的15%,病人年龄偏大,ALT和γ-GT含量较高,预后较差且有较高的复发风险;S2型癌旁组织高表达的蛋白显著富集到ECM-受体相互作用通路、抗原处理和呈递、细胞粘附、PI3K-Akt信号通路等,而低表达的蛋白显著富集到各种代谢相关通路。上述癌旁组织分型标准在前期贺福初院士团队与樊嘉院士团队合作发表的高质量肝癌癌旁蛋白质组数据集(Nature,2019)中得到了验证(图b)。利用解卷积算法,研究团队在癌旁组织中预测了组织浸润免疫细胞组成,发现S2型癌旁组织中树突状细胞、CD8+T细胞、成纤维细胞等含量较高,并采用多重荧光免疫组化在癌旁组织芯片中进行了验证(图c)。进一步,团队采用DIA-MS技术,对正常肝组织、两个亚型的癌旁组织及其配对癌组织进行了定量蛋白质组学分析,聚类分析发现S1型癌旁与正常肝组织类似,而S2型癌旁与癌组织更为接近。相比于正常组织,在S1型癌旁组织中有112个上调蛋白和71个下调蛋白;其中13个上调蛋白为分泌蛋白,可作为潜在血液生物标志物用于肝癌的早期诊断;另一些差异蛋白,可能会参与肿瘤的免疫微环境重塑或促进肿瘤的复发(图d)。 近年来,周虎研究员团队通过开展合作,采用以蛋白质组学为核心的多组学技术,在肝癌肿瘤蛋白基因组研究(Cell,2019;Cancer Cell,2022)、肝癌发生发展相关重要蛋白的发现和功能研究(Advanced Science,2023)等方面取得了一系列科研成果。这些研究成果为肝癌的发生发展机制和潜在精准化靶向治疗方案提供了理论基础,研究产出的高质量大数据集将为肝癌的基础与临床研究提供重要支持。 上海药物所副研究员朱洪文博士、复旦大学附属中山医院林友培博士、南京中医药大学鲁大运博士和四川大学华西医院王诗盛博士为该论文的共同第一作者;朱洪文、高强教授和周虎研究员为该论文的共同通讯作者。该项工作得到了中山医院樊嘉院士、中国科学院分子细胞科学卓越创新中心高大明研究员、美国贝勒医学院章冰教授、华盛顿大学医学院丁丽教授、美国西奈山伊坎医学院王沛教授的大力支持。该研究依托于中国科学院上海药物研究所公共技术中心的重大科研产出。该研究获得了科技部国家重点研发计划、上海市科委青年科技英才扬帆计划、中科院青年创新促进会、赛诺菲优秀青年科技人才等项目的资助。 论文全文链接:https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwad167/7189878 参考文章: 1.Gao Q.et al.Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma.Cell 2019;179:561–77. 2.Jiang Y.et al.Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma.Nature 2019;567:257–61. 3.Dong L.et al.Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma.Cancer Cell 2022;40:70–87. 4.Zhu H.et al.Elevated Nuclear PHGDH Synergistically Functions with cMyc to Reshape the Immune Microenvironment of Liver Cancer.Adv Sci 2023:e2205818. 查看详细>>
来源: 点击量:0近日,中科院苏州纳米所张珽团队在期刊Nano-Micro Letters上发表了最新研究成果“生物组织启发的超软、超薄、力学增强的电纺纤维复合凝胶用于柔性生物电子”(Biological tissue?inspired ultrasoft,ultrathin,and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics)。中科院苏州纳米所为第一署名单位,高强博士后为论文第一作者,通讯作者为张珽研究员。该研究开发了一种新策略,通过将电纺纤维网络嵌入水凝胶中从而实现同时具有超薄结构和优异力学性能的复合水凝胶薄膜(<5μm)的构建。纤维复合水凝胶提供了广泛的可调模量(从~5 kPa到几十MPa),这与大多数生物组织和器官的模量相匹配。超薄的结构和超柔软特性使电纺纤维复合水凝胶能够无缝附着在各种粗糙表面上,是构建贴附型生物电子器件的理想材料。 纤维复合水凝胶薄膜基于静电纺丝、旋涂和冻融联合技术构建(图1)。通过调控静电纺丝时间、旋涂时间和冻融次数,实现对纤维复合水凝胶薄膜理化性质的调控(厚度:5微米到毫米;模量:几千帕到几十兆帕)。例如,增加纺丝时间可显著提高纤维复合水凝胶薄膜的力学性能;提高旋涂速率,有利于降低纤维复合水凝胶薄膜的厚度;增加冻融次数,可提高水凝胶自身的模量。纤维复合水凝胶具有优异的力学强度,一片厚度仅为7微米水凝胶薄膜可轻松托起20g重量的物体。此外,包埋的纤维网络可有效抑制应力集中导致的裂纹扩增,赋予纤维复合水凝胶薄膜优异的抗撕裂性能(图2)。 常规的水凝胶材料具有容易失水的缺点,长期暴露于空气中时,由于体系水分的蒸发从而使水凝胶体系失效。该研究通过在纤维复合水凝胶体系中掺入甘油作为保水剂,使复合水凝胶体系具有优异的抗失水性能。暴露于空气中七天后,仍具备优异的柔性。此外,为了改善纤维复合水凝胶的导电性,甘油/NaCl体系使纤维复合水凝胶在空气中维持长期的高导电性能(图3)。 得益于其超软和超薄的特性,纤维复合水凝胶薄膜可实现对各种不同粗糙表面的无缝贴附。其广泛可调的力学性能,几乎可实现对所有生物软组织(例如脑,肝脏,心脏,肺,心脏和皮肤等)模量的完美匹配,可伴随组织产生形变而不损伤组织,是构建柔性生物电子器件的理想材料(图4)。 基于甘油/NaCl体系的纤维复合水凝胶构建的贴附型生物电极具有比商业凝胶电极更加优异的信噪比和长期使用性能。商用凝胶电极长期(48h)暴露于空气中会由于失水从而丧失性能,甘油/NaCl体系的纤维复合水凝胶电极在7天后仍旧保持良好信噪比,实现对人体肌电信号的采集。甘油/NaCl体系的纤维复合水凝胶电极用于检测人体肌电信号,可实现对不同运动姿势和不同运动强度肌肉电信号的监测(图5)。 研究者通过将电纺纤维网络包埋于水凝胶,开发了一种制备超软、超薄、力学增强复合水凝胶的新策略,实现对不同粗糙物体表面的紧密共形贴附。该工作为超薄柔性生物电子提供新颖的设计和构建思路。 查看详细>>
来源: 点击量:1兼具优异机械性能与高选择性响应能力,是促进柔性力学传感器件走向实际应用的关键难点之一。现有柔性传感器件主要是以敏感材料均质薄膜来构建,其组成单元各向同性的微观结构,使其在受弯曲、压缩或拉伸等不同类型力时具有相似的响应模式,造成器件输出感知信号相近并容易产生相互干扰等问题,同时优异机械性能及自修复等特性对柔性器件在复杂环境下应用稳定性具有重要意义。 近期,中国科学院苏州纳米技术与纳米仿生研究所张珽研究员团队提出以人体皮肤梯度结构为仿生原型,利用单宁酸(TA)修饰后MXene(Ti3C2Tx)二维片层在水性聚氨酯(PU)中自由沉降相分离过程,制备了具有PU层内Ti3C2Tx相梯度分布仿生“非对称(Janus)”结构复合敏感薄膜材料(图1,PU-TA MXene)。一方面,末端带有丰富羟基官能团TA分子于MXene与PU基底之间形成大量氢键/共价键侨联,利用这些键合作用在受力过程中断裂和重组性质,赋予了敏感薄膜优异的机械强度和自修复性能(断裂伸长率达2056.67%、拉伸强度达50.78 MPa、自修复后机械强度保持率为86%),使敏感材料在复杂环境长期使用时信号输出稳定性得到提升。另一方面,仿生“非对称(Janus)”结构赋予了柔性力学传感器对内/外异向弯曲、压力和拉力具有多功能选择性响应能力(图2),与机器学习算法技术相结合能实现对不同类型力>96%识别效率。进一步,将此高机械强度、选择性响应柔性力学传感器件应用于存在多状态实时转换的人体运动关节监测方面,可实现对乒乓球、篮球、羽毛球等需要大量关节切换动作的运动项目实时监控;同时,该柔性力学传感器异向弯曲选择性响应能力,也可应用于蛇形智能装备在救援废墟等复杂环境中,通过实时识别自身运动方向和角度来探索和建立未知路径轨迹(图3)。 该工作以Multifunctional Flexible Sensor Based on PU-TA MXene Janus Architecture for Selective Direction Recognition为题发表在Advanced Materials,文章第一作者是中国科学院苏州纳米技术与纳米仿生研究所研究生白菊和谷文,通讯作者是李铁项目研究员和张珽研究员。该研究得到国家重点研发计划、国家自然科学基金(杰青/面上)、中科院青促会、江西省杰青、江苏省面上基金等支持。 该工作是团队关于多功能柔性传感器相关研究的最新进展之一。另外,团队也制备了一系列性能优异的多功能柔性传感器件,主要包括发展了柔性器件仿手指表皮一体叠层界面结构设计方法,实现单一柔性触觉传感器件对静态压力、静态摩擦力及动态摩擦力选择性响应能力(Research,2020,2020,8910692;Nanoscale,2019,11,5737.),结合与神经识别模式相匹配脉冲频率电信号转换与机器学习数据处理技术,赋予了仿生假肢手、仿真机器人等智能装备对物体冷/热、干/湿状态(Acc.Chem.Res.2019,52,288;Small,2018,14(36),1703902;Adv.Sci.2017,4,1600404.)及材质与种类(InfoMat,2023,INFOMAT-2023-0042,Accepted;npj Flexible Electronics,2022,6,46;中国科学:技术科学,2022,62.)等类人手精细感知能力(图4)。 查看详细>>
来源: 点击量:5